fimmos

occamaz2
toolset
user manual — part 1

(User guide and tools)

INMOS Limited

72 TDS 275 02 March 1991

Copyright ® INMOS Limited 1991
@ , hmos , IMS and occam are trademarks of INMOS Limited.
INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 275 02

Contents overview

Contents

Preface

How to use the manual

User Guide

1 Introduction Introduces the toolset and transputer pro-
gramming. _
2 Overview of the An overview of the toolset containing brief de-
toolset scriptions of each tool, an introduction to the
libraries, and explanations of the toolset con-

ventions.
3 Getting started Shows the command sequences to generate

single transputer programs.

4 Programming single An introduction to programming single trans-
transputers puters, with worked examples.
5 Configuring An introduction to programming and configur-
transputer networks ing transputer networks, with examples.
6 Loading transputer Describes how to load programs onto trans-
programs puters and transputer networks, with descrip-
tions of the tools that are used.

7 Debugging occam Describes how to use the debugger to debug

programs occam programs in post-mortem and break-
point modes.
8 Access to host Describes how to access host services using
services the host file server and i/o libraries.
9 Mixed language Describes how to use C in 0cCam programs.
programming
10 Low level Describes the low level facilities of occam 2.
programming
11 EPROM Describes the EPROM programming facilities
programming of the toolset.

72 TDS 275 02 March 1991

i Contents overview

Tools

12 icollect —code Describes the code collector which generates

collector executable code from single linked units or
configuration binary files.

13 icvlink - Describes the file format convertor that con-
TCOFF file verts object files produced by earlier INMOS
convertor toolsets into TCOFF format.

14 idebug - Describes the toolset debugger, with full de-
debugger scriptions of its post-mortem and interactive

debugging facilities.
15 idump — memory Describes the memory dumper tool which
dumper dumps root transputer memory for post-
mortem debugging.
16 iemit — memory Describes the memory configurer tool which
configurer helps to configure the transputer memory in-
terface.
17 ieprom — EPROM Describes the EPROM program formatter
program formatter which creates executable files for loading into
ROM.
18 ilibr - librarian Describes the librarian tool that creates li-
braries of compiled code.

19 ilink - linker Describes the linker tool that links compiled
code into a single file.

20 ilist —binary Describes the binary lister tool for displaying

lister data from object files.
21 imakef — Makefile Describes the Makefile generator that creates
generator Makefiles for toolset compilations.
22 iserver - host Describes the host file server that loads pro-
file server grams onto transputers and provides run-time

communications with the host.
23 isim — T425 Describes the T425 simulator tool which al-

simulator lows programs to be run without hardware.
24 iskip - skip Describes the skip loader tool which loads
loader programs onto external subnetworks.
25 oc —occam 2 Describes the occam 2 compiler.
compiler
26 occonf - Describes the configurer which generates
configurer configuration binary files from configuration
descriptions.
The Index

72 TDS 275 02 March 1991

Contents

Contents overview

Contents iii
Preface XXi
How to use the manual xxiii
User guide 1
1 Introduction 3
1.1 Overview 3
1.2 Transputers 3
1.3 Transputers and occam 5
1.3.1 The occam programming model 5

1.3.2 Multitransputer programming 6

1.3.3 Reliability 7

1.3.4 Real time programming 7

1.4 Program development using the toolset 7
1.4.1 System design 7

1.4.2 Programming and code generation 8

1.4.3 Debugging 8

2 Overview of the toolset 9
21 Introduction 9
2.1.1 Standard file format 9

2.1.2 New configuration language 10

22 oc -the occam 2 compiler 12
23 Code generation tools 12
2.3.1 Linker 13

2.3.2 Configurer 13

2.3.3 Collector 13

2.4 Code loading 13
2.4.1 Host file server 13

2.4.2 Skip loader 14

25 Program development and support tools 14
2.5.1 Network debugger 14

2.5.2 Memory dumper 15

2.5.3 Librarian 15

72 TDS 275 02

March 1991

Contents

2.5.4 Binary lister 15

2.5.5 Makefile generator 15

2.5.6 File format convertor 16

2.5.7 T425 simulator 16

2.6 EPROM support tools 16
2.6.1 EPROM programmer 16

2.6.2 Memory configurer 16

2.6.3 Memory interface file convertor 16

2.7 The occam libraries 17
2.7.1 Constants 17

2.7.2 Compiler libraries 17

2.7.3 Maths libraries 18

2.7.4 1/O libraries 18
Hostio library 18

Streamio library 19

2.7.5 Other libraries 19

String handling library 19

Type conversion library 19
Extraordinary link handling library 19

Block CRC library 19

Debugging support library 19

Mixed language support library 20

DOS specific hostio library 20

2.8 Program development 20
2.8.1 Development support 21

2.9 File extensions 22
File extensions for use with imakef 22

2.10 Host dependencies 23
Command line syntax 24

2.10.1 Libraries 24

2.10.2 Filenames 24
2.10.3 Search paths 25

2.10.4 Host environment variables 25

2.10.5 Default command line arguments 26

2.11 Toolset conventions 26
212 Command line syntax 27
Standard options 27

2.12.1 Error handling and message format 28
Severities 29

Information messages 30

72 TDS 275 02 March 1991

Contents v
3 Getting started 31
3.1 Example command line 31
3.2 Interrupting programs 31
3.3 Compiling and running a simple example program 32
3.3.1 Setting environment variables 33
3.3.2 Compiling the example program 33
3.3.3 Linking the example program 34
3.3.4 Creating a bootable file 34
3.3.5 Running the example program 35
3.3.6 Compiling and linking for other transputer types 36
3.4 Using imakef 36
4 Programming single transputers 39
4.1 Program examples 39
4.2 occam programs 39
4.2.1 Compiling programs 40
Compilation information 41
4.2.2 Linking programs 41
4.2.3 Viewing code 42
4.2.4 Making bootable programs 42
4.2.5 Loading and running programs 42
4.3 Transputer types and classes 43
4.3.1 Single transputer type 43

4.3.2 Creating a program which can run on a range of
transputers 44
4.3.3 Mixing code compiled for different targets 45
4.3.4 Classes/instruction sets — additional information 48
4.4 Error modes 50
4.4.1 Error detection 51
4.5 Interactive debugging 53
4.6 Alias and usage checking 54
4.7 Using separate vector space 55
4.8 Sharing source between files 57
4.9 Separate compilation 57
4.9.1 Sharing protocols and constants 58
4.9.2 Compiling and linking large programs 59
4.10 Using imakef 59
4,11 Libraries 60
4.11.1 Selective loading 60
4.11.2 Building libraries 61
412 Example program - the pipeline sorter 62
72 TDS 275 02 March 1991

vi Contents
4.12.1 Overview of the program 62

4,12.2 The protocol 65

4.12.3 The sorting element 65

4.12.4 The input/output process 66

4.12.5 The calling program 68

4.12.6 Building the program 68

4.12.7 Automated program building 71

5 Configuring transputer networks 73
5.1 Introduction 73
5.2 Configuration model 74
5.2.1 Configuration language 75

5.2.2 Overall structure of a configuration description 77

5.3 Hardware description 79
5.3.1 Declaring processors 79

5.3.2 NODE attributes 79

5.3.3 NETWORK description 79

5.3.4 Declaring EDGEs 82

5.3.5 Declaring ARCs 82

5.3.6 Abbreviations 83

5.3.7 Host connection 84

5.3.8 Examples of network descriptions 84

5.4 Software description 86
5.4.1 Libraries of linked units 87

5.4.2 Example 87

5.5 Mapping descriptions 88
5.5.1 Mapping processes 89

5.5.2 Mapping channels 90

5.5.3 Moving code and data areas 91

5.5.4 Mapping without a MAPPING section 92

5.5.5 Mapping examples 92

5.6 Example: A pipeline sorter on four transputers 93
5.6.1 Building the program 96

5.6.2 Running the program 98

5.6.3 Automated program building 98

5.7 Use of conditionals in a configuration 99
5.7.1 Example: Configuration using conditional IF 99

5.8 Summary of configuration steps 101
72 TDS 275 02 March 1991

Contents vii
6 Loading transputer programs 103
6.1 Introduction 103
6.2 Tools for loading 103
6.3 The boot from link loading mechanism 104
6.3.1 Breakpoint debugging 104

6.4 Boards and subnetworks 105
6.4.1 Subsystem wiring 105

6.4.2 Connecting subnetworks 106

6.5 Loading programs for debugging 106
6.5.1 Board types 106

6.5.2 Use of the root transputer 107

6.5.3 Analyse and Reset 107

6.6 Example skip load 108
6.6.1 Target network 108

6.6.2 Loading the program 108

6.6.3 Clearing the network 109

7 Debugging occam programs 111
7.1 Introduction 111
7.1.1 Debugging with isim 112

7.2 Programs that can be debugged 112
7.3 Runtime errors 112
7.4 Compiling programs for debugging 114
7.4.1 Symbolic debug information 114

7.4.2 Error modes 114

7.5 Post-mortem debugging 115
7.5.1 Program loading 115

7.6 Breakpoint debugging 116
7.6.1 Runtime kernel 116

7.6.2 Hardware breakpoint support 117

7.6.3 Compiling the program 117

7.6.4 Configuring the program 118

7.6.5 Loading the program 118

7.6.6 Clearing error flags 118

7.6.7 Breakpoint functions and commands 118

7.6.8 Breakpoints 119

7.7 Program termination 119
7.8 Symbolic facilities 120
7.8.1 Locating to source code 120

7.8.2 Browsing source code 121

7.8.3 Inspecting variables 121

72 TDS 275 02

March 1991

viii

Contents

Jumping down channels 121

7.8.4 Tracing procedure calls 122

7.8.5 Modifying variables 122

7.8.6 Breakpointing 122

7.9 Monitor page 122
7.9.1 Startup display 123
Process pointers 124

Registers 125

Error flags 125

Clocks 125

Memory map 125

7.9.2 Monitor page commands 126
Examining memory 126

Locating processes 127

Specifying processes 127

Selecting processes 127

Other processors 127

Breakpoint commands 128

Changing to post-mortem debugging 128

7.10 A method for debugging halted programs 128
7.10.1 Inspecting other processes 128

7.10.2 Locating processes 128
Running on the processor 129

Waiting on a run queue 129

Waiting on a timer queue 129

Waiting for communication on a link 130

Waiting for communication on a channel 130

Processes stopped, terminated or not started 130

7.10.3 Locating to procedures and functions 130

7.11 Library functions 131
7.11.1 Action when the debugger is not available 132

7.12 Debugging with isim 133
7.12.1 Command interface 133

7.12.2 Using the simulator 133

7.12.3 Program execution monitoring 133
Breakpoints 134

Single step execution 134

7.12.4 Core dump file 134

7.13 Debugging using embedded messages 134
7.13.1 Reading the message buffers 135

7.14 Debugging example 135
7.14.1 The example program 135

72 TDS 275 02 March 1991

Contents

7.14.2 Compiling the facs program 138
Using imakef 138
Using the tools directly 138
7.15 Breakpoint debugging 139
7.15.1 Prerequisites for breakpoint debugging 139
7.15.2 Loading the program 139
7.15.3 Setting initial breakpoints 140
7.15.4 Starting the program 140
7.15.5 Entering the debugger 140
7.15.6 Inspecting variables 141
7.15.7 Backtracing 141
7.15.8 Jumping down a channel 141
7.15.9 Modifying a variable 141
7.15.10 Entering #INCLUDE files 142
7.15.11 Resuming the program 142
7.15.12 Clearing a breakpoint 142
7.15.13 Quitting the debugger 142
7.16 Post-mortem debugging 143
7.16.1 Prerequisites for post-mortem debugging 143
7.16.2 Running the example program 143
7.16.3 Creating a memory dump file 143
7.16.4 Running the debugger 144
7.17 Hints and further guidance 148
7.17.1 Invalid pointers 148
7.17.2 Examining and disassembling memory 148
7.17.3 occam scope rules 148
7.17.4 Debugging IF and CASE statements 150
7.17.5 Analysing deadlock 150
7.17.6 Inspecting soft configuration channels 153
7.18 Points to note when using the debugger 153
7.18.1 Abusing hard links 153
7.18.2 Examining the active network (the network is
volatile) 154
7.18.3 Using INSPECT| with channel communications 154
7.18.4 Selecting events from specific processors 154
7.18.5 Minimal confidence check 155
7.18.6 INTERRUPT key 155
7.18.7 Program crashes 155
7.18.8 Undetected program crashes 156
7.18.9 Debugger hangs when starting program 156
7.18.10 Debugger hangs 156

72 TDS 275 02

March 1991

X Contents
7.18.11 Catching concurrent processes with

breakpoints 156

7.18.12 Phantom breakpoints 157

7.18.13 Breakpoint configuration considerations 157

7.18.14 Determining connectivity and memory sizes 158

7.18.15 Long source code lines 158
7.18.16 Setting breakpoints on the transputer seterr

instruction 158

7.18.17 Backtracing to occam configuration code 158

8 Access to host services 159

8.1 Introduction 159

8.2 Communicating with the host 159

8.2.1 The host file server 159

8.2.2 Library support 160

8.2.3 File streams 160

Protocols 161

8.3 Host implementation differences 161

8.4 Accessing the host from a program 162

8.4.1 Using the simulator 162

8.5 Multiplexing processes to the host 162

8.5.1 Buffering processes to the host 163

8.5.2 Pipelining 163

9 Mixed language programming 165

9.1 Introduction 165

9.2 Importing C functions 166

9.2.1 Deciding whether a static area is required 166

9.2.2 Functions which do not require static or heap 167

9.2.3 Declaring the C function 167

Translating C names 169

Linking 169

9.2.4 Functions which require static and/or heap 170

The static area 170

The heap area 170

Callc library 170

9.2.5 Example of using the callc library 173

9.2.6 Linking the program 175

9.3 Parameter passing 176

9.3.1 Return values 179

9.3.2 Examples of passing parameters 179

72 TDS 275 02 March 1991

Contents Xi
10 Low level programming 185
10.1 Allocation 185
10.1.1 The PLACE statement 186
10.1.2 Allocating specific workspace locations 187
10.1.3 Allocating channels to links 188

10.2 RETYPING channels and creating channel array con-
structors 190
10.3 Code insertion 192
10.3.1 Using the code insertion mechanism 192
10.3.2 Special names 194
10.3.3 Labels and jumps 195
10.3.4 Programming notes 195
10.4 Dynamic code loading 195
10.4.1 Calling code 196
10.4.2 Loading parameters 198
10.4.3 Examples 199
10.5 Extraordinary use of links 203
10.5.1 Clarification of requirements 203
10.5.2 Programming concerns 204
10.5.3 Input and output procedures 204
10.5.4 Recovery from failure 205
10.5.5 Example: a development system 205
10.6 Scheduling 207
10.7 Setting the error flag 207
11 EPROM programming 209
11.1 Introduction 209
11.2 Processing configurations 210
11.2.1 Single program, single processor, run from ROM 211

11.2.2 Configured program, single processor, run from
ROM 211
11.2.3 Single program, single processor, run from RAM 211

11.2.4 Configured program, single processor, run from
RAM 211

11.2.5 Configured program, multiple processor, run from

RAM 211

11.2.6 Configured program, multiple processor, root
run from ROM, rest of network run from RAM 211
11.3 The eprom tool: ieprom 212

11.4 Using the configurer and collector to produce ROM-
bootable code 212

72 TDS 275 02 March 1991

xii Contents

11.5 Summary of EPROM tool steps for different processing

configurations 213

Tools 215
12 icollect — code collector 217
12.1 Introduction 217
12.2 Running the code collector 218
12.2.1 Examples of use 220

12.2.2 Input files 221

12.2.3 Output files 221
Debug data file 222

12.2.4 Small values of IBOARDSIZE 222

12.3 Program interface 222
12.3.1 Interface used for ‘T’ option 222
Warning messages 223

12.3.2 Interface used for ‘T" and ‘M’ options 224

12,4 Memory allocation for single processor 225

12.4.1 Memory allocation for mixed language programs 226

12.5 The memory map file 227
12.5.1 Single processor, boot from link 228
12.5.2 Configured program boot from link 231
12.5.3 Boot from ROM programs 233
Single processor, boot from ROM, run in RAM 233
Single processor, boot from ROM, run in ROM 233

Configured program, boot from ROM, run in
RAM 234

Configured program, boot from ROM, run in
ROM 234
12.6 Non-bootable files 234
12.7 Boot-from-ROM options 235
12.8 Alternative bootstrap loaders 236
12.9 Use of the icollect ‘Y’ option 236
12.10 Error messages 237
12.10.1Warnings 237
12.10.2Serious errors 238
13 icvlink — TCOFF convertor 245
13.1 Introduction 245
13.2 Running the format convertor 247
13.2.1 Default command line 249
13.2.2 Input files 249

72 TDS 275 02 March 1991

Contents

Xiii

Compiled object files 249
Library files 249
Linked object files 249
13.2.3 OQutput files 250
13.3 Transputer classes and error modes 250
13.4 Summary of rules for using icvlink 250
13.5 Error messages 251
13.5.1 Warning Messages 251
13.5.2 Serious errors 251
14 idebug — debugger 253
14.1 Introduction 253
14.1.1 Post-mortem debugging 253
14.1.2 Breakpoint debugging 253
14.1.3 Mixed language debugging 254
14.2 The root transputer 254
14.2.1 Board wiring 255
14.2.2 Post-mortem debugging R-mode programs 255
14.2.3 Post-mortem debugging T-mode programs 255

14.2.4 Post-mortem debugging from a network dump
file 256
14.2.5 Debugging a dummy network 256
14.2.6 Methods for breakpoint debugging 256
14.3 Running the debugger 257
14.3.1 Toolset file types read by the debugger 259
14.3.2 Environment variables 259
14.3.3 Program termination 260
14.3.4 Post-mortem mode invocation 260

14.3.5 Reinvoking the debugger on single transputer
programs 262
14.3.6 Breakpoint mode invocation 262
Clearing error flags on transputer boards 262
Program loading 263
14.3.7 Function key mappings 263
14.4 Debugging programs on INMOS boards 264
14.4.1 Subsystem wiring 264
14.4.2 Debugging commands 265
14.4.3 Detecting the error flag in breakpoint mode 265
14.5 Debugging programs on non-INMOS boards 265
14.6 Monitor page commands 265
14.6.1 Command format 266
14.6.2 Specifying transputer addresses 267

72 TDS 275 02

March 1991

Xiv Contents

14.6.3 Scrolling the display 267

14.6.4 Editing keys 267

14.6.5 Commands mapped by ITERM 268

14.6.6 Summary of main commands 269

14.6.7 Symbolic-type commands and scroll keys 271

14.6.8 Symbolic-type commands 292

14.7 Symbolic functions 292
14.7.1 Breakpoint functions 299

14.8 Error messages 301
14.8.1 Out of memory errors 301

14.8.2 If the debugger hangs 301

14.8.3 Error message list 301

15 idump — memory dumper 311
15.1 Introduction 311
15.2 Running the memory dumper 311
15.2.1 Example of use 312

15.3 Error messages 312
16 iemit — Memory configurer 315
16.1 Introduction 315
16.2 Running iemit 316
16.3 Output files 318
16.4 Interactive operation 319
16.4.1 Page 0 319

16.4.2 Page 1 319

16.4.3 Page 2 324

16.4.4 Page 3 326

16.4.5 Page 4 327

16.4.6 Page 5 327

16.4.7 Page 6 328

16.5 Example iemit display pages 328
16.6 diemit error and warning messages 332
16.7 Memory configuration file 333
16.8 Memory interface conversion tool icvemit 336
16.9 Running icvemit 336
16.10 icwvemit error messages 337
17 ieprom — EPROM program convertor 339
17.1 Introduction 339
17.2 Prerequisites to using the hex tool ieprom 339

72 TDS 275 02 March 1991

Contents xv
17.3 Running ieprom 340
17.3.1 Examples of use 341
17.4 ieprom control file 341
17.5 What goes in the EPROM 345
17.5.1 Memory configuration data 345
17.5.2 Jump instructions 346
17.5.3 Bootable file 346
17.5.4 Traceback information 346
17.6 ieprom output files 346
17.6.1 Binary output 347
17.6.2 Hex dump 347
17.6.3 Intel hex format 347
17.6.4 Intel extended hex format 347
17.6.5 Motorola S-record format 348
17.7 Block mode 348
17.7.1 Memory organisation 348
17.7.2 When to use block mode 348
17.7.3 How to use block mode 349
17.8 Example control files 349
17.9 Error and warning messages 351
18 ilibr — librarian 353
18.1 Introduction 353
18.2 Running the librarian 353
18.2.1 Default command line 355
18.2.2 Library indirect files 355
18.2.3 Linked object input files 356
18.3 Library modules 356
18.3.1 Selective loading 356
18.3.2 How the librarian sorts the library index 356
18.4 Library usage files 357
18.5 Building libraries 357
18.5.1 Rules for constructing libraries 358
18.5.2 General hints for building libraries 358
18.5.3 Optimising libraries 358
Library build targetted at specific transputer
types 360
Semi-optimised library build targetted at all trans-
puter types 360
Optimised library targetted at all transputer
types 361
18.6 Error Messages 361
72 TDS 275 02 March 1991

Xvi

Contents

18.6.1 Warning messages 362

18.6.2 Serious errors 362

19 ilink — linker 365
19.1 Introduction 365
19.2 Running the linker 365
19.2.1 Default command line 369

19.3 Linker indirect files 369
19.3.1 Linker directives 369

19.3.2 Linker indirect files — supplied with the toolset 372

19.4 Linker options 372
19.4.1 Processor types 372

19.4.2 Error modes — options H, S and X 373

19.4.3 TCOFF and LFF output files — options T, LB, LC 373

19.4.4 Extraction of library modules - option Ex 374

19.4.5 Display information — option I 374

19.4.6 Virtual memory — option KB 374

19.4.7 Main entry point — option ME 375

19.4.8 Link map filename — option MO 375

19.4.9 Linked unit output file — option O 375
19.4.10 Permit unresolved references - option U 375
19.4.11 Disable interactive debugging — option ¥ 376

19.5 Selective linking of library modules 376
19.6 The link map file 376
19.7 Using imakef for version control 378
19.8 Error messages 378
19.8.1 Warning messages 378

19.8.2 Errors 379
Serious errors 380

19.8.3 Embedded messages 384

20 ilist — binary lister 385
20.1 Introduction 385
20.2 Data displays 385
20.2.1 Example displays used in this chapter 386

20.3 Running the lister 387
20.3.1 Default command line 388

20.4 Specifying an output file — option O 389
20.5 Symbol data - option A 389
20.6 Code listing — option C 392
20.7 Exported names — option E 393
20.8 Hexadecimal/ASCIl dump - option H 394

72 TDS 275 02

March 1991

Contents xvii
20.9 Module data — option M 395
20.10 Library index data — option N 396
20.11 Procedural interface data — option P 397
20.12 Specify reference — option R 398
20.13 Full listing — option T 398
20.14 File identification — option W 400
20.15 External reference data — option X 402
20.16 Error messages 402

20.16.1Warning messages 403
20.16.2Serious errors 403

21 imakef — Makefile generator 405
21.1 Introduction 405
21.2 How imakef works 406

21.2.1 Target files 406

21.2.2 File extensions for use with imakef 406

21.3 Running the Makefile generator 408
21.3.1 Example of use 408

21.3.2 Incorporating C modules 409

21.3.3 Configuration description files 410

21.3.4 Disabling debug data 410

21.3.5 Removing intermediate files 410

21.3.6 Files found on ISEARCH 410

21.4 imakef examples 411
21.4.1 Single transputer program 411

21.4.2 Multitransputer program 412

21.4.3 Mixed language program 412

21.5 Format of Makefiles 413
21.5.1 Macros 413

21.5.2 Rules 414
Action strings 414

21.5.3 Delete rule 414

21.5.4 Editing the Makefile 415
Adding options 415

Re-running imakef 415

21.6 Library usage files 415
21.7 Linker indirect files 416
21.8 Error messages 416

72 TDS 275 02

March 1991

Xviii Contents

22 iserver — host file server 419
22.1 Introduction 419
22.1.1 Loadahle programs 419

22.2 Running the server 419
22.2.1 Examples of use 420

22.2.2 Supplying parameters to the program 421

22.2.3 Checking and clearing the network 421

22.2.4 Terminating the server 421

22.2.5 Options to use when loading the program 422

22.2.6 Specifying a link address — option SL 422

22.2.7 Terminating on error — option SE 423

22.3 Server functions 423
File system commands 424

Host environment commands 424

Server control commands 425

22.4 Error messages 426
23 isim — IMS T425 simulator 429
23.1 Introduction 429
23.2 Running the simulator 429
23.2.1 Passing in parameters to the program 430

23.2.2 Example of use 430

23.2.3 ITERM file 431

23.3 Monitor page display 431
23.4 Simulator commands 432
23.4.1 Specifying numerical parameters 433

23.4.2 Commands mapped by ITERM 433

23.5 Batch mode operation 441
23.5.1 Setting up ISIMBATCH 441

23.5.2 Input command files 442

23.5.3 Output 442

23.5.4 Batch mode commands 442

23.6 Error messages 443
24 iskip — skip loader 447
24.1 Introduction 447
24.1.1 Uses of the skip tool 447

24.2 Running the skip tool 448
24.2.1 Skipping a single transputer 449
Subsystem wired down 449

Subsystem wired subs 449

72 TDS 275 02 March 1991

Contents XiX
24.2.2 Skipping multiple transputers 449
24.2.3 Loading a program 450
24.2.4 Monitoring the error status — option E 451
24.2.5 Clearing the error flag 451
24.3 Error messages 452
25 oc — 0ccam 2 compiler 453
25.1 Introduction 453
25.2 Running the compiler 454
25.2.1 Filenames 458
25.3 Transputer targets 458
25.4 Compilation error modes 460
25.5 Enable/Disable Error Detection 461
25.6 Enabling/disabling warning messages 462
25.7 Support for interactive debugging 462
25.8 Separately compiled units and libraries 463
25.9 ASM and GUY code 463
25.10 Compiler directives 463
25.10.1 Syntax 464
25.10.2 #INCLUDE directive 464
25.10.3 #USE directive 465
25.10.4 #IMPORT directive 466
Changes from the IMS D705/D605/D505 products 467
25.10.5 #COMMENT directive 468
25.10.6 #OPTION directive 469
25.10.7 #PRAGMA directive 470
#PRAGMA EXTERNAL "declaration" comment 471

#PRAGMA TRANSLATE identifier " string"
comment 471
#PRAGMA LINKAGE ["seclion-name"] comment 472
25.11 INLINE keyword 473
25.12 Implementation of channels 473
25.13 Implementation of usage checking 474
25.13.1 Usage rules of occam 2 474
25.13.2 Checking of non-array elements 475
25.13.3 Checking of arrays of variables and channels 475
25.13.4 Arrays as procedure parameters 476
25.13.5 Abbreviating variables and channels 477
25.14 Implementation of alias checking 477
25.14.1 Alias checking 477
Scalar variables 477
Arrays 478

72 TDS 275 02

March 1991

XX

Contents

25.15 Error messages 479
25.15.1 Warning messages 480

25.15.2 Errors 482

26 occonf — configurer 485
26.1 Introduction 485

26.2 Running the configurer 486

26.2.1 Search paths 488

26.3 Boot-from-ROM options 488

26.4 Configuration error modes 489

26.5 Enable/Disable Error Detection 490

26.6 Enabling memory lay-out re-ordering 490

26.7 Enabling/disabling warning messages 491

26.8 Support for interactive debugging 491

26.9 ASM and GUY code 492

26.10 Configurer diagnostics 492
26.10.1 Warning messages 493

72 TDS 275 02 March 1991

Preface

This manual is a combined user and reference guide to the occam 2 toolset.
Part 1 ‘User guide and tools' (this book) describes the toolset and shows how
it is used to develop and run transputer programs. Part 2 ‘occam libraries and
appendices’ (72 TDS 276 02) describes the libraries supplied with the toolset
and provides reference data in the form of appendices. A guide to how to use
this manual, follows immediately after this preface.

The occam 2 toolset

The occam 2 toolset is a set of software tools for developing transputer pro-
grams on host systems. Used with the occam libraries, it provides a complete
environment for developing programs on transputers and transputer networks.

The toolset allows 0ccam programs to be written using any convenient text
editor. Programs are then compiled and linked using programs resident on the
host or running on the transputer board. Self-booting code for single transputers
and multitransputer networks is produced using separate tools, and loaded from
the host system down the transputer link.

Toals that assist program development include a librarian tool for building code
libraries, a network debugger which provides both interactive and post-mortem
debugging facilities, and a transputer simulator that allows programs to be tested
without transputer hardware. A Makefile generator is provided to assist with
program version control, and a binary lister tool allows object files to be decoded
and displayed in a readable form.

Transputer programs are normally written in occam to make full use of trans-
puter parallel processing. Programs can also be written in C and included in
occam programs as separately compiled procedures.

The occam 2 toolset is intended for developing programs on transputers and
transputer boards that are loaded from the host via a transputer link. Boards
that boot from on-board ROM require application software to be in a format
suitable for blowing into ROM. Two tools are provided with the toolset to support
EPROM programming, they are the EPROM program formatting tool and the
EPROM memory configurer.

72 TDS 275 02 March 1991

XXii Preface

Host versions

The manual is designed to cover all host versions of the toolset:

IMS D7205 - IBM and NEC PC running MS-DOS.
IMS D5205 - Sun 3 systems running SunOS

IMS D4205 - Sun 4 systems running SunOS

IMS D6205 - VAX systems running VMS

72 TDS 275 02 March 1991

How to use the manual

About the manual

The occam 2 user manual is divided into two parts, as follows:
o User Guide and tools 72 TDS 275 02

— Chapters 1 to 11 show how the tools are used to develop pro-
grams on single transputers and transputer networks.

— Chapters 12 to 26 provide details of individual tools in terms of
command line syntax, command options, running the tool and
possible error messages.

e Occam libraries and appendices 72 TDS 276 02

— A detailed description is given of all the libraries supplied with the
toolset.

— A number of appendices provide reference material for program-
mers such as predefined names and constants, transputer in-
structions, and the implementation of 0CcCam on the transputer.
A glossary of terms and a short bibliography is also included.

References which span the two parts, take the form of a part number followed
by a chapter or section number. Each part contains its own index.

This manual does not contain details of how to install the software, which is to
be found in the Delivery Manual that accompanies the shipment.

The manual is intended to cover all host versions of the toolset; where there are
differences between the various host implementations, they are highlighted and
explained.

Readership

This manual is intended for programmers and system designers who wish to
develop transputer programs on host systems. Readers of the manual should
already be familiar with programming in a high level language, the software de-
velopment process, and the general ideas of 0occam and parallel processing.
Familiarity with the syntax of occam will also be an advantage, because OC-
cam programs and code fragments are used throughout the book to illustrate
concepts and procedures. For information about the occam language, refer
to the ‘occam 2 Reference Manual’, which accompanies this release. For an
introduction to 0ccam programming, read ‘A tutorial introduction to occam

72 TDS 275 02 March 1991

XXiv How to use the manual

programming’.

The reader should also be familiar with the hardware and operation of the trans-
puter evaluation board on which the programs will be developed. Information
about INMOS transputer evaluation boards is available in the form of product
datasheets.

User guide

The User Guide, provided in part 1 of this manual, contains information to show
programmers how to use the tools to develop transputer programs. It describes
how to design and build programs for transputers and transputer networks.

Example programs supplied with the toolset are used extensively throughout the
User Guide to illustrate program design and development.

Chapter breakdown

For those who do not wish to read the entire Guide or wish to get started quickly,
some recommendations follow.

If you have not used the toolset before then you should first read chapter 2,
which contains an overview of the toolset.

Chapter 3, ‘Getting started' is provided as a tutorial to show users how to compile,
link and run simple 0ccam programs on a single transputer. The example used
is provided in the examples directory supplied with the toolset.

Before attempting to write any programs of your own you should read chapters
4 and 8, which show how to compile simple programs that use host terminal i/o.
If you are new to 0ccam you should begin by writing a program which runs on
a single processor before attempting to write multiprocessor code.

Chapter 7 explains how to debug programs running on transputer boards, and
describes how to use the T425 simulator to test programs before loading them
onto hardware. Reading this chapter thoroughly and working studiously through
the examples will help to familiarise you with the operation of the debugger and
simulator tools.

Chapter 9 gives details of how to develop mixed language programs. It shows
how modules written in C can be inserted into an 0occam program using a set
of library procedures to initialise static and heap areas. Read and digest the
information in this chapter carefully before attempting to write mixed language
programs.

Chapters 10 and 11 provide more specialised information covering the use of

72 TDS 275 02 March 1991

How to use the manual XXV

the low level programming and EPROM programming facilities provided with the
toolset. These facilities are not aimed at the users who are new to occam or
transputers. Users intending to use the EPROM tools should be familiar with
INMOS transputers and with memory products.

Tools

The Tools section, provided in part 1 of the manual, contains reference informa-
tion for all tools in the toolset. Each tool is described in a separate chapter.

The Tools section is not intended to be read in chapter order. Chapters should
be consulted as required to obtain information about how to use specific tools.

The occam libraries

Reference information for the occam libraries is given in part 2 of this manual.
All the occam library routines provided with the toolset are described. Routines
are grouped according to the library to which they belong.

Appendices

These appear at the end of part 2 of the manual. They provide reference infor-
mation on the following topics:

o Predefined names.

o Transputer instructions.

« Constants.

e The implementation of 0Ccam on the transputer.
 Configuration language definition.

e Bootstrap loaders.

e ITERM

« Host file server protocol.

A glossary of terms and a short bibliography is also included.

72 TDS 275 02 March 1991

XXVi

How to use the manual

Conventions used in the manual

Convention

Italics

Bold

Teletype

KEY|

Braces

{}

Brackets

(]

Option prefix

72 TDS 275 02

Description

Used in command line syntax to denote parameters for which
values must be supplied. Also used for book titles and for
emphasis.

Used for new terms, pin signals, and the text of error mes-
sages.

Used for listings of program examples and to denote user
input and terminal output.

Used to denote function keys for the debugger and simulator
tools. Keyboard layouts for specific terminals can be found in
the Delivery Manual that accompanies the shipment.

Used to indicate the continuation of a function key description.

Used to denote lists of items in command line syntax.

Used to denote optional items in command line syntax.

Examples of command line input are duplicated to show both
option prefix characters. Use the line containing the ‘/’ char-
acter if you have an MS-DOS or VMS based system and the
line containing the ‘=’ character if you are using any other host
including UNIX.

March 1991

User guide

72 TDS 275 02 March 1991

2 User guide

72 TDS 275 02 March 1991

1 Introduction

This chapter gives a gentle introduction to transputers and how transputers are
programmed. It introduces the occam model for programming single and multi-
ple transputers, and briefly describes some of its advantages. The chapter also
outlines the development process for building and debugging programs, and
explains how the tools form an integrated development environment.

1: Overview

The occam 2 toolset is a software development system for building and de-
bugging programs on networks of transputers. The 0ccam 2 toolset supports
the full range of INMOS transputers and mixed networks of transputers. Used
with the ANSI C compiler the 0ccam 2 toolset can be used to build and debug
mixed language software systems.

System performance is substantially increased by parallel processing. Transput-
ers and the 0ccam 2 toolset make building high performance parallel systems
as simple as sequential programming with conventional microprocessors.

1.2 Transputers

Transputers are high performance microprocessors that support parallel process-
ing through on-chip hardware. They can be connected together by their serial
links in application-specific ways and can be used as the building blocks for
complex parallel processing systems.

The transputer is a complete microcomputer on a single chip. It has a very
fast (single cycle) on-chip memory, on-chip inter-processor links, and a pro-
grammable memory interface that allows external memory to be added with the
minimum of supporting logic.

Figure 1.1 shows the architecture of the transputer.

Multi-transputer systems can be built very simply. The four high speed links allow
transputers to be connected to each other in arrays, trees, and many other con-
figurations. (The IMS M212 and T400 each have two high speed communication
links). The circuitry to drive these links is all on the transputer chip, and only two
wires are needed to connect two transputers together. Figure 1.2 shows four
transputers connected using their communication links, and the communication
paths between them.

In addition to providing a communication link between programs running on pro-

72 TDS 275 02 March 1991

4 1 Introduction

System

Sorvicas Processor

e
Interface > Output

On-chip —N
RAM [— .

—

1

Application specific interface

Figure 1.1 Transputer architecture

cessors, transputer links allow memory to be examined without loading a pro-
gram, and permit programs to be loaded and executed. This allows whole net-
works of transputers to be loaded down a single transputer link.

Transputer

Transputer Transputer|

Transputer|

Figure 1.2 A node of four transputers
Each single transputer supports parallel processing through a system of internal

72 TDS 275 02 March 1991

1.3 Transputers and OCCam 5

channels implemented as words in memory. Each transputer has a highly effi-
cient built-in run-time scheduler; processes waiting for input or output, or waiting
on a timer consume no CPU resources, and process context switching time on
an IMS T800-25 is less than one microsecond. The communication links operate
concurrently with the processing unit and can transfer data on all links without
affecting the performance of the CPU.

The range of transputer devices available includes: 32 and 16 bit processors; a
peripheral control processor; a link switch; and a parallel link adaptor.

A wide range of transputer programming boards is supplied by INMOS and other
suppliers for a variety of hosts. These boards can be used for:

« Developing and debugging transputer software
e Running transputer programs (as accelerator boards)
o Loading software to transputer networks from the host.

¢ Building specific transputer networks.

1.3 Transputers and occam

occam 2 has been designed to reflect the architecture of the transputer, and
for maximum coding efficiency the whole system can be programmed in OC-
cam 2. The inherent security and code efficiency of occam and the ability to
use the special features of the transputer make occam 2 a powerful tool for
programming concurrent systems.

Transputers can also be programmed in G and FORTRAN, and their optimised
design ensures efficient code. Where programs need to exploit concurrency but
still need to use languages other than occam 2, special 0ccam code can be
used to link modules together.

1.3.1 The occam programming model

The occam programming model consists of parallel processes communicating
through channels. Channels connect pairs of processes and allow data to be
exchanged between them. Each process can be built from a number of parallel
processes, so that an entire software system can be described as a hierarchy
of intercommunicating parallel processes. This model is consistent with many
modern software design methods.

Communication between processes is synchronized. When a message is passed

72 TDS 275 02 March 1991

6 1 Introduction

between two processes the output process does not proceed until the input
process is ready. Buffered communication can be achieved by explicitly inserting
a buffer process between the two processes.

The occam programming model also provides an excellent basis for building
mixed language systems. Components written in languages other than occam
can be defined as processes inputting and outputting messages on channels.
The ANSI C and FORTRAN compilers supplied by INMOS are compatible with
occam and can be used to build equivalent 0CCam processes in any of these
languages. Library functions are provided in each language for the input and
output of messages on channels.

1.3.2 Multitransputer programming

In the 0occam 2 programming language parallelism can be expressed directly.
Each occam process is an independently executable process. A configuration
language extension to 0CCam 2 is used to distribute processes over networks
of transputers, and can be used to program multi-processor systems.

Figure 1.3 shows how three discrete processes, programmed in 0CCam or in
a compatible language, can be executed on a single processor or on three
processors connected in series.

© :
(p2) |

¢ ~

Three processes on
one transputer #

The same ﬁrocesses distributed
over three transputers

Figure 1.3 Mapping processes onto one or several transputers

72 TDS 275 02 March 1991

1.4 Program development using the toolset 7

1.3.3 Reliability

Because it has a formal mathematical framework, the 0ccam 2 language can
be extensively checked at compile time, and many programming errors can be
detected before the program is run. This significantly improves the reliability of
programs, and makes building correct programs faster and easier.

Each construct in the language has a precise meaning. This makes programs
easier to write and understand, and supports the formal mathematical manipu-
lation of programs required for program proving and advanced program optimi-
sation techniques.

1.3.4 Real time programming

occam 2 provides specific support for real time programming. The key features
of the transputer that support real time programming are listed below.

¢ Direct and efficient implementation of parallel processes in hardware
e Prioritisation of parallel processes

e Implementation of software interrupts as messages on 0ccam channels,
so that interrupt routines can be written as high priority processes

o Easy programming of software timers, allowing delays and non-busy
polling

1.4 Program development using the toolset

The 0ccam 2 toolset is a complete set of cross-development tools. The tools run
under standard host operating systems, either on the host itself or on a transputer
attached to the host, and use standard ASCII source files. All the tools can be
used in conjunction with existing software for text editing and source control
and with compilation utilities such as Make programs. For embedded systems,
programs can be loaded onto the target hardware from the host via a transputer
link.

1.4.1 System design

The designer can use the occam programming model to design software sys-
tems at the application level, by identifying the separate components of the sys-
tem in terms of processes and collections of related functions and procedures.
The design can be directly expressed in 0ccam and then checked by the com-

72 TDS 275 02 March 1991

8 1 Introduction

piler before transferring it to hardware.

1.4.2 Programming and code generation

To implement components of the design the programmer creates 0CCam source
texts, then compiles and links them together to produce executable code. Com-
piled source files can easily be combined into libraries for code sharing.

Code is linked using the toolset linker. For multi-transputer systems software
processes are allocated to transputers, and channels are allocated to links, in a
configuration description. This description, plus the linked code for each trans-
puter, is processed by the toolset configurer to create a multi-transputer program.
This program can then be distributed across a transputer network down trans-
puter links.

1.4.3 Debugging

Programs for multi-processor systems can be debugged at the symbolic level
using the network debugger that allows a breakpointed or halted program to be
analysed in terms of its source code. A low level debugging environment us-
ing direct memory display, instruction disassembly, and processor data is also
provided. Breakpoint debugging allows programs to executed interactively, and
post-mortem debugging allows stopped programs to be debugged from the con-
tents of the transputers’ memory. The debugger inserts no additional code into
the pragram, but rather reads data from a description file. This guarantees that
the code generated when debugging is disabled will always run in the same way
as the final version of the program.

occam programs can be executed and tested without transputer hardware us-
ing the T425 simulator tool which provides low-level debugging facilities. This
method is appropriate for debugging individual parts of a large transputer pro-
gram that would run on a single T425 processor.

72 TDS 275 02 March 1991

2 Overview of the toolset

This chapter introduces the toolset and briefly describes each of the tools in turn.
It also introduces the occam libraries, describes host system dependencies,
and explains the conventions used within the toolset.

2.1 Introduction

The occam 2 toolset is a set of tools and supporting software that help with
the development of transputer programs. It allows programs developed on host
machines to be loaded onto transputers and transputer networks via transputer
evaluation boards such as the IMS B004 and B0OO08 boards. All of the tools
operate with files in standard host format. This enables you to use the editor
with which you are familiar, and allows different types of version control systems
to be used.

A list of the tools in the toolset is given in table 2.1.

There are a number of different implementations of the toolset, running on dif-
ferent host computers. Versions are available for the IBM PC/AT and PC/XT
(and compatibles) running DOS, DEC VAX systems running VMS, and the Sun
Microsystems Sun 3/Sun 4 workstations running SunOS.

This manual covers all host versions of the toolset. Where differences exist
between implementations they are highlighted and explained.

2.1.1 Standard file format

All tools in the OCCam 2 toolset generate and use files in a standard object
code format known as TCOFF (Transputer Common Object File Format). The
adoption of this format makes the mixing of code from different compilers more
convenient and facilitates the porting and transfer of object code. In particular,
it enables code generated by all INMOS language compilers to be mixed in the
same system.

Support is provided for previous versions of the toolset (i.e. the IMS D705, D605
and D505 products) which used a file format known as LFF Linker File Format.
It is recommended, however, that the current release of the toolset is used to
recompile existing programs. This has the advantage that the current toolset
may be used for their further development.

Two levels of support are provided for LFF format:

72 TDS 275 02 March 1991

10 2 Overview of the toolset

e The linker tool 11ink supplied with the current toolset supports the pro-
duction of files in LFF format. The toal has a command line option which
enables output files to be produced that can be used with the iboot
and iconf tools issued with the IMS D705, D605 and D505 releases of
the toolset.

« A file convertor tool icvlink supplied with the current toolset enables
code generated by previous INMOS toolsets (i.e. the IMS D705, D605,
D505, D511A, D611A and D711A products) to be used with the current
occam 2 toolset. Note: there are some limitations on this tool's use,
see chapter 13.

2.1.2 New configuration language
The toolset introduces a modified configuration language that allows software

and hardware to be described separately and joined by a mapping description.
The language is an extension to 0CCam and can be used on any size of network.

72 TDS 275 02 March 1991

2.1 Introduction 11

Program | Description

icollect | The code collector. Takes the output of the configurer tool and
generates bootable code for a transputer network.

icvemit | Memory interface file convertor. The tool converts files produced
by iemi (a previous version of iemit) into the file format recog-
nised by the current version of ieprom and iemit.

iecvlink | The TCOFF file format convertor. Converts LFF object files to
TCOFF format.

idebug The toolset debugger. Provides symbolic and assembly level
debugging.

idump The memory dumper for storing the contents of the root trans-
puter. Used when debugging programs running on the root
transputer.

iemit The transputer memory configuration tool. Used for evaluat-
ing and defining specific memory configurations for incorporation
into ROM programs.

ieprom | The EPROM program formatter tool. Formats transputer
bootable code for ROM programmers.

ilibr The librarian. Builds libraries of compiled code.

ilink The linker. Resolves external references and links compiled
code into a single file.

ilist The binary lister. Displays source level information from object
code.

imakef The Makefile generator. Generates Makefiles for building object
and bootable code. Also creates library usage files.

iserver | The host file server. Loads programs onto transputer boards
and provides run-time communications with the host.

isim The T425 transputer simulator.

iskip The skip loader tool. Prepares transputer networks to run pro-
grams without using the root transputer.

oc The occam compiler. Compiles source for IMS T212, M212,
T222, T225, T400, T414, T425, T800, T801 and T805 transput-
ers.

occonf The configurer. Checks the configuration description and pro-
duces a data file for the code collector.

Table 2.1 The occam 2 toolset

72 TDS 275 02 March 1991

12 2 Overview of the toolset

2.2 oc - the occam 2 compiler

The occam 2 compiler takes as input 0ccam source code contained within
standard host format text files. Any text editor that produces standard ASCII
files can be used to create the 0ccam source.

The compiler produces code for T212, M212, T222, T225, T400, T414, T425,
T800, T801 or the T805 transputers in one of three program execution error
modes. Command line options allow you to specify the transputer type, error
mode, and other information required by the compiler.

The compiler supports a number of source code directives which enable different
types of source files to be compiled together. The main directives are:

e #INCLUDE - includes other source files
e #USE - uses separately compiled code and libraries

The compiler also supports the directives #COMMENT, #IMPORT, #OPTION,
and #PRAGMA.

The implementation of transputer classes, error modes and channels have all
changed slightly with this release of the toolset. Details of these changes are
given in chapters 4 and 25.

2.3 Code generation tools

Three tools are used in sequence to generate the executable file for a transputer
or transputer network from the compiled object code:

ilink —the toolset linker which links separately compiled program units.

occonf - the configurer which generates a configuration data file for
multitransputer programs. This tool is not needed for single transputer
programs.

icollect — the code collector which reads the configuration file and
generates a single bootable file for a transputer network. The collector is
also used to create a bootable file from linker output for a single transputer
program.

72 TDS 275 02 March 1991

2.4 Code loading 13

2.3.1 Linker

The linker 11ink links separately compiled modules and libraries into a single
file, resolving external references and generating a linked unit.

Linked units can be used in configuration descriptions to map software onto
specific arrangements of iransputers. While a linked unit for a single transputer
program can used by icollect to generate a bootable file.

2.3.2 Configurer

The configurer occon£ generates configuration information for transputer net-
works from a configuration description, written using the transputer configuration
language. The tool prepares the program for configuring on a specific arrange-
ment of transputers by analysing the configuration description and producing a
data file for the collector tool.

2.3.3 Collector

The code collector tool icollect takes the data file generated by occonf
and generates a single file that can be loaded on a transputer network. The file
contains bootable code modules for each processor on the network, along with
distribution information that is used by the loader.

icollect is also used to generate bootable code for single transputer pro-
grams from linked units. This mode of use must be selected by a command line
option.

2.4 Code loading

Bootable code for single transputers and transputer networks is loaded onto the
transputer hardware using the host file server tool iserver. The auxiliary skip
loading tool iskip can be used prior to iserver in order to load a program
onto an external network connected via a root transputer.

2.41 Host file server

The host file server iserver is a combined host server and loader tool. When
invoked to load a program it both loads the code onto the transputer hardware
and provides runtime services on the host (such as program i/o) for the transputer
program. iserver runs on the host computer, which is usually not a transputer.

72 TDS 275 02 March 1991

14 2 Overview of the toolset

2.4.2 Skip loader

The skip loader iskip is used to force a program to be loaded over the root
transputer (the transputer connected to the host). This is useful for loading
programs onto a transputer board connected to the host via a root transputer.

It is also useful for debugging programs that normally use the root transputer to
run all or part of a program. The debugger always runs on the root transputer.
Provided the network has at least one processor which is not used by the pro-
gram, iskip may be used in conjunction with iserver to load the program
over the root transputer. For details of skip loading see section 6.6.

2.5 Program development and support tools
Seven tools are provided to assist and support program development:

idebug - the network debugger.

idump — the memory dump tool for use with idebug when debugging
programs on the root transputer.

ilibr - the librarian which generates libraries of compiled code.

ilist — the binary lister which decodes and displays data from object
files.

icvlink - the file format convertor which allows import of code from
earlier INMOS toolsets.

imakef — the Makefile generator which creates Makefiles for use with
MAKE programs.

isim - the T425 simulator tool which enables programs to be executed
in the absence of transputer hardware.

2.51 Network debugger

The network debugger idebug provides comprehensive debugging facilities for
transputer programs. It allows stopped programs to be analysed from their mem-
ory image or from image dump files (post-mortem debugging) and supports in-
teractive debugging with breakpoints. In breakpoint mode variables can be in-
spected and modified and debugging messages can be inserted in any process
on the network.

72 TDS 275 02 March 1991

2.5 Program development and support tools 15

252 Memory dumper

The special debugging tool idump is provided to assist with the post-mortem
debugging of programs that run on the root transputer. When used in post-
mortem mode idebug executes on the root transputer and overwrites the pro-
gram image. idump saves the program image to a file which is later read by
the debugger.

2.5.3 Librarian

The librarian ilibr creates libraries of compiled code that can be used in
application programs. Each separately compiled file, that is supplied as input to
the librarian, becomes a library module that can be selectively linked.

A library can contain modules compiled from the same source for different targets
and compilation modes.

Code written using other compatible toolsets can be mixed with 0Ccam code in
the same library.

2.5.4 Binary lister

The binary lister 11ist decodes object code files and displays data and infor-
mation from them in a readable form. Command line options select the category
and format of data displayed.

Examples of the kind of information that can be displayed are library contents,
code entry points, and external reference data.

2.5.5 Makefile generator

The Makefile generator imakef creates Makefiles for specific program compi-
lations. Coupled with a suitable MAKE program it can greatly assist with code
management and version control.

imakef constructs a dependency graph for a given object file and generates
a Makefile in standard format. In order to make use of the tool a special set
of file extensions for source and object files must be used throughout program
development.

72 TDS 275 02 March 1991

16 2 Overview of the toolset

2.5.6 File format convertor

The file format convertor icvlink converts object files generated by earlier
INMOS toolsets to TCOFF format. TCOFF is a standardised object file format
for transputer code.

icvlink allows existing object code be used with the current toolset. Files to
be converted must be compiled or linked object files or libraries.

2.5.7 T425 simulator

The T425 simulator tool isim simulates the operation of the T425 transputer,
enabling programs to be executed in the absence of transputer hardware. It pro-
vides low-level debugging features such as the inspection of variables, registers,
and queues, disassembly of memory, break points, and single step execution.

2.6 EPROM support tools

Three tools provide support for installing bootable transputer code in ROM: the
EPROM programmer ieprom; the memory configurer iemit and icvemit
the memory interface file convertor.

2.6.1 EPROM programmer

The EPROM programmer ieprom converts bootable files into a format suit-
able for input to ROM programmers. Files are generated for input to several
proprietary ROM loaders, or in hexadecimal or binary format.

2.6.2 Memory configurer

The memory configurer iemit allows specific memory configurations to be eval-
uated and tested ‘on the bench’ before committing them to a device. The com-
pleted configuration can be included in the ieprom output file for automatic
installation into the processor.

2.6.3 Memory interface file convertor
icvemit is an auxiliary tool that converts files produced by iemi (a previ-

ous version of iemit) into the file format recognised by the current version of
ieprom and iemit. See section 16.8 for further details.

72 TDS 275 02 March 1991

2.7 The OCCamM libraries 17

2.7 The occam libraries

A comprehensive set of libraries and include files are provided with the toolset.
Some form part of the standard support for the 0ccam language (the compiler
libraries), others are user-level libraries to support standard programming tasks
such as terminal i/o and file access.

Object code is supplled for all libraries and in some cases source code is supplied
as well. Table 2.2 lists the libraries that are supplied with the toolset and specifies
whether the source code is provided. Details of all the libraries can be found in
part 2, chapter 1.

Library Description Source
provided
occamx.lib Compiler libraries no
hostio.lib General purpose i/o library yes
streamio.lib | Stream i/o support yes
snglmath.lib | Single length maths functions yes
dblmath.lib | Double length maths functions yes
tbmaths.lib | T400/T414/T425 optimised maths func- | yes
tions

string.lib String handling routines yes
xlink.lib Extraordinary link handling routines no
convert.lib | Type conversion routines yes
cre.lib CRC coding no
debug.lib Debugging support no
callc.lib Mixed languages support no
msdos.lib DOS specific hostio library yes

Table 2.2 The occam 2 libraries

2.71 Constants

Files containing definitions of constants and protocols are also provided for use
with the occam libraries. These are listed in table 2.3.

2.7.2 Compiler libraries

The compiler libraries are used internally by code generated by the compiler;
they are not intended for direct use by the programmer.

72 TDS 275 02 March 1991

18 2 Overview of the toolset

File Description

hostio.inc Host file server constants
streamio.inc | Stream i/o constants
mathvals.inc | Mathematical constants
linkaddr.inc | Transputer link addresses
ticks.ing Rates of the two transputer clocks
msdos.inc DOS specific constants

Table 2.3 Library constants
The compiler automatically loads the library required for a specific combination
of compiler options.
2.7.3 Maths libraries
The maths libraries provide trigonometric and logarithmic functions for all trans-
puter types supported by the toolset. Single and double length routines are
supplied in the libraries snglmath.1lib and dblmath. 1ib respectively, and
versions of the same routines optimised for the T400, T414 and T425 processors
are provided in the library tbmaths . 1ib. Constants for the maths libraries can
be found in the include file mathvals. inc.

2.7.4 1/O libraries

Two libraries containing routines to assist with i/o are provided with the toolset.
Constants for the two libraries are provided in separate files.

Hostio library
The hostio library contains routines that provide access to the file system and
other host services via the host file server. The routines are based on commu-
nication with the server via the SP protocol. The SP protocol is defined in the
include file hostio.inc.
The hostio library is used for:

¢ File handling

o Host access

e Terminal i/o

Other routines provide facilities such as time and date processing, process buffer-

72 TDS 275 02 March 1991

The occam libraries 19

ing and multiplexing.

Streamio library

The streamio library contains routines which provide i/o at a higher level than
the hostio routines. The protocol is based on a stream model. The streamio
library is used for general character-based i/o using stream protocols, and for
controlling the screen display. Protocols for the streamio library are defined in
the include file streamio.inc.

Stream input and output procedures are used to input and output characters us-
ing keystream and screen stream protocols. These protocols must be converted

to the server protocol before communicating with the host. For this reason the
streamio routines include stream processes to perform this conversion.

2.7.5 Other libraries
String handling library
The string handling library provides string handling functions and procedures to

perform, for example, string comparison, string search, string editing, and line
parsing.

Type conversion library

The type conversion library converts occam data types to ASCII strings and
vice versa.

Extraordinary link handling library

The extraordinary link handling library provides facilities for handling error situa-
tions on links.

Block CRC library

The block CRC library provides functions for generating CRC codes from char-
acter strings.

Debugging support library

The debugging support library provides functions for stopping processes, insert-
ing debugging messages and analysing deadlocks.

72 TDS 275 02 March 1991

20 2 Overview of the toolset

Mixed language support library

The mixed languages support library provides functions for initialising static and
heap areas, enabling modules written in sequential languages to be incorporated
in occam programs.

DOS specific hostio library

The DOS specific hostio library supports the use of functions specific to the IBM
PC and other DOS hosts.

2.8 Program development

The occam 2 toolset is a development system for transputers. Creation of
transputer executable code involves several stages which involve the use of
specific tools for each stage of the process.

The main steps in developing a program, for a transputer or transputer network,
and the tools to use at each stage are listed below.

+ Write the source: Source code can be written using any ASCII editor
available on the system. Code can be divided between any number
of source files. occam source code must conform to the occam 2
language definition.

Compile the source: Each occam source code file must be compiled
using the occam 2 compiler oc to produce one or more compiled object
files in TCOFF format. Each file must be compiled for the same or a
compatible transputer type and compilation mode.

Link the compiled units: Compiled source files are linked together. This
generates a single file called a linked unit with no external references.
The linking operation also links in the library modules required by the
program, which are selected by transputer type and compilation mode
from the compiled library code.

Configure the program: For multitransputer programs a configuration
description must be constructed to assign linked units to specific nodes
on the transputer network, and link them by channel variables. The de-
scription is processed by the configurer tool occon£ to produce a con-
figuration data file.

Generate executable code: The configuration data file generated by
occonf is analysed by the code collector icollect to generate a
single executable file for a transputer network. The same tool is used

72 TDS 275 02 March 1991

2.8 Program development 21

to create bootable programs for running on a single transputer, by using
the linked unit as the input file.

e Load and run the program: The executable or bootable file is loaded
onto the transputer network down a host link. Once loaded into memory,
the code begins to execute.

Figure 2.1 illustrates the development process in terms of the architecture of the
toolset. The default file extensions generated by the tools are used to represent
source and target files.

.pgm occonf @

Cing Cink !

oc ilink icollect @
i ,é\ ‘AHJ

o) oy !

iserver

Transputer
network

Figure 2.1 Toolset compilation architecture

2.8.1 Development support

The development support tools are aids to developing software and software
systems. They are designed to assist with processes such as debugging, code
sharing, and software version control. Used systematically during software de-
velopment they can help to produce reliable code quickly and with the minimum
of manual recompilation.

The network debugger idebug can be used in breakpoint mode during code
development to test and debug programs interactively. In post-mortem mode it
can be used to investigate the reasons for program failure.

The librarian ilibxr can be used to build libraries which make it possible to
share and transfer code between developers.

72 TDS 275 02 March 1991

22 2 Overview of the toolset

The binary lister 11ist can be used throughout program development to assess
code size and structure, and to determine the contents of object code files such
as libraries.

The Makefile generator imakef£ can be used in conjunction with a MAKE pro-
gram to ensure that all object code is updated to reflect changes in source files.

The file format convertor icvlink can be used to import existing object code
where the source is unavailable or too complicated to recompile easily.

The T425 simulator isim can be used to run programs in the absence of trans-
puter hardware. It provides low-level debugging features such as the inspection
of variables, registers, and queues, disassembly of memory, break points, and
single step execution.

2.9 File extensions

File extensions can be used to indicate the various types of source and object
code that they contain and certain default names are assumed and where possi-
ble generated by the tools. For example, the compiler assumes the suffix .occ
for the input source file and adds the extension .tco to the output file unless
otherwise specified.

Assumed extensions permit common input file extensions to be omitted on the
command line and default generated extensions allow output files to be easily
identified and manipulated by the host file system.

The default output extensions and assumed input extensions are not part of the
required syntax and may be modified or omitted by personal choice (except when
imakef is used, see below). None are mandatory parts of the syntax.

Adoption of a convention is recommended where large systems are being devel-
oped. The standard set of conventions outlined here can be used, or a separate
system can be designed to suit a particular environment. The standard toolset
system has the advantage of built in defaults, and has been designed to reflect
the underlying architecture of the toolset.

The default extensions are listed in table 2.4 and the relationships of the exten-
sions to the compilation architecture is illustrated in figure 2.1.

File extensions for use with imakef

The Makefile generator imake £ requires special file extensions for compiled and
linked object files, which differ from the set of default extensions presented here.

72 TDS 275 02 March 1991

2.10 Host dependencies 23

Ext Description
.btl | Bootable code file. Created by icollect.

.btr | Executable code minus bootstrap information used for input
to ieprom. Created by icollect.

.cfb | Configuration data file. Created by occonf and
icollect.

.clu | Configuration object file. Created by occonf.

.dmp | Core-dump file created by idump or network-dump file cre-
ated by idebug.

.inc | Include file. Input to oc and occconf£.

.1lku | Linked unit. Created by ilink.

.1bb | Library build file. Input to ilibx.

.1ib | Library file. Created by ilibxr.

.liu | Library usage file. Created and used by imakef.
.1nk | Linker indirect file. Input to i1ink.

.occ | occam 2 source files. Assumed by oc.

.pgm | Configuration description. Assumed by occonf£.

.rsc | Dynamically loadable code file. These files are designed
to be executed by KERNEL . RUN.

.tco | Compiled code file. Created by oc.

Table 2.4 Standard file extensions

The extensions are used by imakef£ to trace file dependencies and construct
the necessary commands for building all types of object files.

If you use imake£ then you must use the special set of extensions. For more
details see chapter 21.

2.10 Host dependencies
The occam 2 toolset is hosted on four systems:
e IBM PC running DOS

e DEC VAX running VMS

¢ Sun 3 running SunOS (UNIX)

72 TDS 275 02 March 1991

24 2 Overview of the toolset

¢ Sun 4 running SunOS (UNIX)
Source and object code is portable between all these systems.

The four implementations have been designed to reflect the ‘flavour’ of the op-
erating system. This leads to minor differences between them in the areas of
command line syntax and the filename character set. Installation issues such as
the setting of environment variables and the definition of search paths are also
host dependent, and are covered in detail in the Delivery Manual that accompa-
nies the release. They are only described briefly here.

Operating system dependencies are as far as possible made transparent to the
user. The few differences are summarised below.

Command line syntax

The major difference between different host implementations is the use of the
standard host system option prefix. For MS-DOS and VMS based toolsets the
prefix character is the forward slash ‘/*. For all other hosts, including UNIX the
prefix character is the dash ‘-’;

2.10.1 Libraries

Most library routines supplied with the toolset are host independent, but a few
specific procedures may be provided for some operating systems. For details of
host dependent routines see the Delivery Manual.

If you wish to write programs that will be fully portable across different systems,
use only the host independent routines, which are described in part 2, chapter
1

2.10.2 Filenames

Filenames, with or without the full directory path, conform to the normal conven-
tions of the host operating system except that characters which can be inter-
preted as directory separators must not be used in the filename part. Prohibited
characters are: dot ., colon :, semi-colon ;, square brackets [, round brack-
ets (), angle brackets <>, forward slash /, backslash \, exclamation mark !,
or the equals sign =.

Where the host operating system allows logical names to be used in place of
filenames, such as with VMS, the toolset allows logical names to be used, but
the name must be followed by a dot (.). This prevents the tool from adding an
extension, which would generate a host file system error.

72 TDS 275 02 March 1991

210 Host dependencies 25

2.10.3 Search paths

All tools which use or generate filenames use a standard mechanism for locating
files on the host system. This mechanism is used whenever a filename has to be
interpreted e.g. from'the command line, as part of a directive such as # INCLUDE
or #USE or a library call. The same mechanism is used in all operating system
versions of the toolset.

The mechanism is based on a list of directories to be searched. If the name
includes a directory path only this directory is searched. If the file is not found
on the path an error is generated. Relative pathnames are treated as relative to
the current directory i.e. the directory from which the tool is invoked.

If no directory path is specified the current directory is searched followed by the
directories specified in the ISEARCH environment variable e.g.

ISEARCH=C:\IOCTOOLS\LIBS\;C:\MYDIR\

The mechanism used to define environment variables depends on the operating
system. For example, on the IBM PC they are defined using the set command;
on VAX systems running VMS they can be set up either as logical names or as
VMS symbols.

Examples showing how to set up environment variables on your system can be

found in the Delivery Manual that accompanies the release. Details of the oper-
ating system commands can be found in the operating system documentation.

2.10.4 Host environment variables
The toolset uses several environment variables on the host system. Use of these

variables is optional but if defined they will affect the behaviour of the tools on
your system.

72 TDS 275 02 March 1991

26 2 Overview of the toolset

Variable Meaning

ISEARCH The list of directories that will be searched if the full pathname
is not specified. Pathnames must be terminated by the direc-
tory separator character. Used by all tools that read and write
files.

ISERVER Defines an alternative iserver to be used by the host system
for booting a transputer network and communicating with the
application program running con the network.

ITERM The file that defines terminal keyboard and screen control
codes. Used by idebug, isimand iemit.

IBOARDSIZE | The size (in bytes) of memory on the transputer board. Used
by non-configured programs.

TRANSPUTER | The host address at which the transputer board is connected
to the host. Used by iserver.

IDEBUGSIZE | The amount of memory (in bytes) on the root transputer avail-
able for use by idebug.

2.10.5 Default command line arguments

An environment variable can be defined on the system to specify a default set of
command line arguments for certain tools. The variable name must be defined
in upper case and is constructed from the tool name by appending the letters
‘ARG’. For example, the variable for ilist is ILISTARG.

Tools for which a default command line can be defined, and the variables used
to define them, are listed below.

Tool Variable
ilink ILINKARG
ilibr ILIBRARG
ilist ILISTARG
icvlink | ICVLINKARG

Command line parameters must be specified within each variable using the spe-
cific syntax required by each tool.

2.11 Toolset conventions

The toolset conforms to a number of conventions for the command line syntax,
file names, and error reporting.

72 TDS 275 02 March 1991

2,12 Command line syntax 27

2.12 Command line syntax

All tools in the toolset conform to a standard command line syntax. Toolset
commands use the following syntax conventions:

o Commands, and their parameters and options, obey host system stan-
dards.

¢ Filenames, either directly specified on the command line or as arguments
to options, must conform to the host system naming conventions.

» Options must be prefixed with the standard option prefix character for the
operating system '/’ for MS-DOS and VMS based toolsets and (‘~’ for
all other hosts including UNIX).

e Command line parameters and options can be specified in any order but
must be separated by spaces.

e Lists of arguments to options, where allowed, must be enclosed in paren-
theses (), and the items in the list must be separated by commas.

o If no parameters or options are specified the tool displays a help page
that explains the command syntax.

Standard options

Where options are common to more than one tool in the toolset, the following
conventions apply:

e All tools provide help information if invoked with no options.

e The ‘F" option, where supported, specifies an indirect input file. If no
name is given then input may be taken either from host standard input
(normally the keyboard) or the command line.

e The 'I’ option, where supported, displays progress information as the
tool runs.

e The 'L’ option , where supported, loads the tool onto a transputer board
and awaits a command line. Only applies to transputer hosted tools.

e The ‘O’ option, where supported, is used to specify an output filename.
If no filename is given then ASCII output is sent to host standard output
(normally the screen), or to a file whose name is derived from an input
file.

72 TDS 275 02 March 1991

28

2 Overview of the toolset

« The ‘XO' option, invokes the tool in single invocation mode. Only applies

to transputer hosted tools. The tool terminates after execution and has
to be rebooted onto the transputer board when it is next invoked. Single
invocation is the default.

The *XM' option, invokes the tool in continuous execution mode. Only ap-
plies to transputer hosted tools. Once the tool has completed its current
operation it remains resident on the transputer board and can be rein-
voked without rebooting onto the transputer board by the server. When
the tool is reinvoked, a combination of server options and the tool's own
options are used on the server's command line. For example:

UNIX system:

oc -1 -xm

iserver -ss —xm myprog.occ -o myprog.t4h
iserver -ss -xm -t8 myprog.occ -o myprog.t8h
iserver -ss -xm -t5 myprog.occ -o myprog.t5h

MS-DOS/VMS system:

oc /1 /xm

iserver /ss /xm myprog.occ /o myprog.tdh
iserver /ss /xm /t8 myprog.occ /o myprog.t8h
iserver /ss /xm /t5 myprog.occ /o myprog.t5Sh

In this example the occam compiler is first loaded onto the trans-
puter board. It is then invoked in continuous execution mode, with
different compiler options (see section 25) selected for the program
"myprog.occ”. A different output file is specified each time the tool
is invoked. The server ‘ss’ option enables the program to communicate
with the host file server (see chapter 22). The ‘xm’ option must be used
each time the tool is to be reinvoked.

2.121 Error handling and message format

All tools in the toolset use a common system of error handling and a common
format for error messages. This has the following advantages:

¢ The tool generating the error can be identified even when the tool is run

in a ‘background’ mode, that is, out of contact with the terminal.

« Some editors can provide automatic location of the error if the error mes-

sages are in a fixed format.

e Host programs or operating system utilities can be used to detect errors.

72 TDS 275 02 March 1991

2.12 Command line syntax 29

The format includes information to assist in locating the error in the file, an
indication of the error severity, and a message explaining why the error occurred.
The general format is as follows:

severity—toolname —filename (linenumber)—message

where: severity indicates the category of error, which can be: Warning; Error,
Serious; or Fatal. These are described in more detail below.

toolname is the standard toolset name for the tool. Names defined using
host system abbreviations and batch files are not displayed.

filename and linenumber indicate the file and line where the error was
detected. They are only displayed when the error occurs in a file. They
are commonly displayed when files of the wrong format are specified on
the command line, for example, a source file is specified where an object
file is expected.

message is the text explaining why the error occurred and, if appropriate,
how to recover from the problem.

Far example:

Error-oc—-Invalid command line option (sting)

Severities

Warning messages identify relatively minor inconsistencies in code; they may
also warn of the impending generation of more serious errors. The tool continues
to run and may produce usable output if no errors of a more serious nature are
encountered subsequently.

Error messages indicate errors from which immediate recovery is possible but
long term recovery is unlikely. The tool may continue to run, but further errors
are likely and the tool will probably abort eventually. No output is produced.

Serious messages indicate errors from which no immediate recovery is possible.
Further processing is abandoned and the operation is aborted. No output is
produced.

Fatal errors indicate internal inconsistencies in the software and cause immediate

termination. No output is produced. Fatal errors should be reported immediately
to an INMOS field applications engineer.

72 TDS 275 02 March 1991

30 2 Overview of the toolset

Information messages

Messages that are part of the normal operation of the tool, for example, infor-
mation from the debugger and simulator tools are displayed in special formats.
The formats will become familiar with use.

72 TDS 275 02 March 1991

3 Getting started

This chapter contains a tutorial that shows you how to compile, link, and run a
simple example program on a single processor.

A more complex programming example, illustrating separate compilation, can be
found in chapter 4, together with a detailed description of program development
for single transputers. While chapter 5 provides a description and examples of
multitransputer programming.

The tutorial, given in this chapter, assumes that you have a boot from link board
containing a IMS T400, T414 or T425 processor. If you have a board fitted with
any other transputer you must compile and link the program for that transputer
type, see section 3.3.6. The tutorial also assumes that certain environment
variables have been set up. These are introduced in sections 2.10.3 and 2.10.4
and a description of how to set them up is given in the delivery manual supplied
with this product.

If you do not have a transputer board use the T425 simulator tool isim to run
the application program, see section 3.3.5.

3.1 Example command line

Where necessary, the example command lines are duplicated for different host
versions of the toolset; the ‘=’ switch character is used in command lines for
UNIX based toolsets and the ‘/* character is used in commands for MS-DOS

and VMS based toolsets. When reproducing the examples you should use the
appropriate command line for your host system.

3.2 Interrupting programs

To interrupt an application program while it is still running, press the host system
BREAK key to interrupt the server. See the delivery manual, section ‘Server
Interrupts’ for further details.

When the BREAK key is pressed the following prompt is displayed:

(x)exit, (s)hell, or (c)ontinue?

To abort the program type ‘x’ or press This terminates the host file
server.

To suspend the program so that you can resume it later, type ‘s’.

72 TDS 275 02 March 1991

32 3 Getting started

To abort the interrupt and continue running the program, type ‘c’.

3.3 Compiling and running a simple example program

The example program simple.occ reads a name from the keyboard and dis-
plays a greeting on the screen. The source of the program can be found in the
toolset examples directory. The program uses the library hostio.1lib and
incorporates the include file hostio.inc.

The program is illustrated below.
#INCLUDE "hostio.inc" -- contains SP protocol
PROC simple (CHAN OF SP fs, ts, []INT memory)
#USE "hostio.lib" -- iserver libraries
[IBYTE buffer RETYPES memory:
BYTE result:
INT length:
SEQ
so.write.string (fs, ts,

"Please type your name :")
so.read.echo.line (fs, ts, length, buffer,

result)
so.write.nl (fs, ts)
so.write.string (fs, ts, "Hello ")

so.write.string.nl (fs, ts,
[buffer FROM 0 FOR length])
so.exit (fs, ts, sps.success)

The first line in the program loads the file hostio. inec. This file contains the
definition of protocol SP, used to communicate with the host file server, and a
number of constants that are used in conjunction with the host i/o library.

The procedure simple is then declared. All the working code is contained
within this procedure. Single processor programs must always use a similar
parameter list.

The serverlibrary hostio.libis referenced by the #USE directive. This library

contains all the procedures used by the program. See part 2, section 1.4 for
descriptions of the routines.

72 TDS 275 02 March 1991

3.3 Compiling and running a simple example program 33

Before the body of the procedure a number of variables are declared. First, the
memory array is retyped as a BYTE array. This enables the program to use the
free memory on the board as a character buffer.

The variables 1length and result are then declared for use by the program.
The variable 1length refers to the number of characters in the name read from
the keyboard, and result is used by the library routine to indicate whether
or not the read was successful. The result is ignored by this example for the
sake of simplicity; it is assumed that screen writes and keyboard reads always
succeed.

The working code is contained within a SEQ, indicating that the statements which
follow are to be executed sequentially. All of the statements are calls to library
routines in hostio.lib. The code prompts for a name, reads the name from
the keyboard, and types a greeting on the screen.

The last statement calls a library procedure which terminates the server, returning
control to the host operating system. Without this statement the program would
finish and appear to hang, and the server would have to be terminated explicitly
by interrupting the program.

3.3.1 Setting environment variables

Certain environment variables must be set up prior to using the toolset. These
are introduced in sections 2.10.3 and 2.10.4 and a description of how to set them
up is given in the delivery manual supplied with this product. For example, the
compilation will fail with a message indicating that hostio.inc has not been
found, should the environment variable ISEARCH not be set up correctly.

3.3.2 Compiling the example program

In order to compile the program in its simplest form i.e. with all defaults enabled
the following command line should be used:
oc simple L7799

Because the file has the default extension of . oce you can omit it when invoking
the compiler.

The compiler will create afile called simple. tco, containing the code compiled
for a T414 in HALT mode. The compiler will perform the necessary syntax, alias
and usage checks and will insert code to perform run-time error checking. By
default the compiler enables interactive debugging with idebug.

72 TDS 275 02 March 1991

34 3 Getting started

3.3.3 Linking the example program

To use the result of your compilation it must be linked with the libraries that it
uses.

To link the program type:

ilink simple.tco hostio.lib -f occama.lnk (UNIX)
ilink simple.tco hostio.lib /f occama.lnk (MS-DOS/VMS)

The linked program will be written to the file simple.lku. As no output file
is specified, the file is named after the input file and the default link extension
.1ku is added.

The library hostio.lib is the server library used by this program.

The ‘£’ option specifies a linker indirect file containing commands and directives
to ilink. Three indirect files are supplied to support different transputer types.
They are occam2. 1nk, occama. lnk and occam8 . 1nk; they are described
in chapter 19. These files identify various libraries including compiler libraries
which are required to be linked with the program. These files are provided as a
short-hand method of specifying such libraries to the linker.

The file occama. 1nk is the correct file to use for T4 series transputers.

Note: In more complex programs, libraries may be dependent on other files
and libraries. To ensure all necessary libraries are linked into a program, the
imakef tool may be used with a suitable MAKE program. (See below).

3.3.4 Creating a bootable file

Before the program can be run it must be made ‘bootable’. This involves adding
bootstrap information to make the program loadable and is achieved using the
collector tool icollect. One of the following commands should be used de-
pending on the type of host in use.

icollect simple.lku -t (UNIX)
icollect simple.lku /t (MS-DOS/VMS)

By default icollect expects the input file to have been produced by the con-
figurer. Because the example program is going to run on a single processor
there is no need to configure it. The ‘t’ option instructs the collector to build a
bootable file from a linked unit. The bootable program will be written to the file
simple.btl.

72 TDS 275 02 March 1991

3.3 Compiling and running a simple example program 35

icollect will also create a configuration binary file as a by-product of creating
the bootstrap. Configuration binary files describe the network configuration, in
this case a single transputer. This file will have the extension .cfb and is
created by icollect for use by the debugger. For multitransputer programs
the configurer is used to create configuration binary files.

Chapter 12 gives more information on the collector tool.

3.3.5 Running the example program

To run the program it must be loaded onto a transputer board using the host
file server tool iserver. To load and run the program use one of the following
commands:

iserver -se -sb simple.btl (UNIX)
iserver /se /sb simple.btl (MS-DOS/VMS)

The 'sb’ option specifies the file to be booted and loads the program onto the
transputer board. It has the effect of resetting the board, opening communication
with the host, and loading the program onto the network. The ‘se’ option directs
the server to terminate if the program sets the error flag. For more details about
the server options see chapter 22.

Figure 3.1 shows an example of the screen display, obtained by running
simple.btl on a UNIX based toolset, for a user called ‘John’.

iserver -se -sb simple.btl

Please type your name :John
Hello John

Figure 3.1 Example output produced by running simple.btl.

If you are using the simulator to run the example program use one of the following
commands:

isim -bg simple.btl UNIX
isim /bqg simple.btl MS-DOS/VMS

The ‘bg’ option specifies batch quiet mode which causes the simulator to run the
program and then terminate. For more details about how to use the simulator
see chapter 23.

72 TDS 275 02 March 1991

36 3 Getting started

3.3.6 Compiling and linking for other transputer types

If you are using a transputer other than a T400, T414 or T425 you must specify a
target transputer type for the compilation and linkage function, since the default
type T414 will be inappropriate. Chapters 25 and 19 describe the options avail-
able. The same option must be specified to both the compiler and the linker,
otherwise the linker will report an error. In addition, you must change the linker
indirect file as described in chapter 19.

For example to compile and link the program ‘simple.occ’ so that it will run
on a T800, T801 or T805 use the following command lines, as appropriate:

UNIX hosts:

oc simple -t800
ilink simple.tco hostio.lib -f occam8.lnk -t800

MS-DOS/VMS hosts:

oc simple /t800
ilink simple.tco hostio.lib /f occam8.lnk /t800

3.4 Using imakef

As an alternative method of program development the toolset Makefile generator
imakef can be used. This tool can produce a Makefile for any type of file that
can be built with the toolset tools. imake£ serves two purposes:

« It enables the user to generate a target file automatically (e.g. a bootable
file) without having to manually perform the intermediate stages of pro-
gram development i.e. compiling, linking, configuring etc.

« For more complex programs, comprising several modules, it simplifies
the incorporation of changes to the program by identifying dependencies
and incorporating them into the Makefile.

In order for imakef£ to be able to identify file types, a different system of file
extensions must be used to that used in the examples above. See chapter 21
for a description of imakef and the extensions used.

To create a Makefile for the example program, use the following command:

imakef simple.b4h

72 TDS 275 02 March 1991

3.4 Using imakef 37

The .b4h extension informs imakef that we wish to build a bootable program
fora T414 in the default HALT error mode. imakef will create a Makefile called
simple.mak containing full instructions on how to build the program.

To build the program run the MAKE program on simple.mak. The entire
program will be automatically compiled, linked and made bootable, ready for
loading onto the transputer.

For example:
make -f simple.mak UNIX
make /f simple.mak MS-DOS/VMS

To run the program:

iserver -se =-sb simple.bdh (UNIX)
iserver /se /sb simple.b4h (MS-DOS/VMS)

If you are using the simulator to run the example program use one of the following
commands:

isim -bg simple.b4h UNIX
isim /bg simple.b4h MS-DOS/VMS

72 TDS 275 02 March 1991

38 3 Getting started

72 TDS 275 02 March 1991

4 Programming single
transputers

This chapter provides an introduction to 0ccam programming using the toolset,
using an example program for single processors. The chapter follows on from
the information and example given in chapter 3 ‘Getting started’. For information
on programming multitransputer networks see chapter 5.

Before reading this chapter the user should already be familiar with the concepts
and syntax of the 0occam programming language. For detailed information about
the language see the ‘occam 2 Reference Manual' and for an introduction to
occam see ‘A tutorial introduction to occam programming’.

4.1 Program examples
A simple programming example, to get you started, is provided in section 3.3.

This chapter uses a more complex example, illustrating separate compilation;
which can be found in section 4.12.

All the example programs are designed for boot from link boards. If you have a
board that boots from ROM you should set it to boot from link or run the example
programs using the T425 simulator tool isim.

4.2 occam programs

Within the toolset a single processor program is a single 0ccam procedure with
a fixed pattern of formal parameters, as illustrated below.

#INCLUDE "hostio.inc"
PROC occam.program (CHAN OF SP fs, ts,
[JINT memory)
body of program

The procedure and its parameters can have any legal 0Ccam names. You must
always supply the procedure with the same type of formal parameters as shown
above, to enable communication with the host.

All occam procedures are terminated by a colon (:), at the same indentation

as the corresponding PROC keyword. Do not forget the colon at the end of a
program.

72 TDS 275 02 March 1991

40 4 Programming single transputers

Program input and output is supported by the host file server, which is resident
on the host computer. Access to the host file server is via the i/o libraries, which
are described in part 2, chapter 1. Whenever routines from these libraries are
used the channels £s and ts must be passed to the routine so that it can
communicate with the host file server.

Channel £s comes from the host file server and ts goes to the host file server.
Both use protocol SP, which is defined in the include file hostio.inec. Fig-
ure 4.1 shows how these channels are connected.

The array memory contains the free memory remaining on the transputer evalua-
tion board after the program code has been loaded and the workspace allocated.
It is calculated by subtracting the area occupied by the program code and data
from the value specified in the IBOARDSIZE host environment variable. The
memory array is passed to the program as an array of type INT, where it can
be used. By allowing programs to be run on boards with different memory sizes,
this array aids program portability between different boards.

host computer transputer board
fs
[occam
program
ts

Figure 4.1 Program input/output

4.21 Compiling programs

The compiler produces object code in TCOFF format for input to the linker. The
compiler is capable of compiling code for any one of a range of transputers (the
IMS T212, M212, T222, T225, T400, T414, T425, T800, T801 or T8OS) in one
of three error modes and with interactive debugging either enabled or disabled.
The compiler enables interactive debugging by default unless the compiler ‘¥’
option is used.

The standard error modes are HALT system and STOP process. A special
mode, UNIVERSAL, enables code to be compiled so that it may be run in either
HALT or STOP mode. The target processor and error mode must be specified
for each compilation, using options on the command line. By default the compiler
compiles for an IMS T414 in HALT mode, and when compiling for this transputer
type and error mode you may omit the options. In all other cases the options
must be supplied.

72 TDS 275 02 March 1991

Compiling occam programs 41

Other operating features of the compiler may be changed by options. See sec-
tion 25.2 for a full description of these options.

If the compiler detects any errors, the file name and line number of each error
is displayed along with a message explaining the error.

If the compilation succeeds, the compiler creates a new code file in the current
directory. The filename for the new file is derived from the name of the source
file and the default file extension .tco is added. The filename can also be
specified on the command line.

Compilation information

It is sometimes necessary to check how much workspace (data space) will be
required to run the code. This information is stored in the code file produced
by the compiler, linker and librarian. To display the information use the ‘I’ com-
mand line option or use the binary lister tool 11ist. For details of ilist see
chapter 20.

4.22 Linking programs

When all the component parts of a program have been compiled they must be
linked together to form a whole program. Component parts include the main
program, any separately compiled units, and any libraries used by the program,
including the compiler libraries.

If required, the compiler libraries are automatically loaded by the compiler unless
specifically disabled with the compiler ‘E’ option. If you are unsure whether your
program uses the compiler libraries it is best to always link in the appropriate
library. Only library modules actually used by the compiled code will be included
in the linked code file. The correct library for your program depends on the
transputer type of the compilation.

To assist the user, three linker indirect files are supplied listing the compiler
libraries appropriate to different processor types. The relevant file should be
included on the linker command line using the ‘£’ option. occam2.lnk is
provided for the T2 series, occam8 . 1nk for the T8 series and occama.lnk
for other 32-bit transputers.

For further details of the compiler libraries see part 2, section 1.2.

By default, the order in which the code modules are specified on the command
line determines their order within the linked unit; library modules being placed
after the separately compiled modules. This default can be overruled by using the
compiler directive ##RAGMA LINKAGE (see section 25.10.7) and the linkage

72 TDS 275 02 March 1991

42 4 Programming single transputers

directive #SECTION (see section 19.3.1). These directives enable the user to
prioritise the order in which modules are linked together and so influence the
use of on-chip RAM. A map of the linked unit, showing the order of the modules,
may be produced by specitying the linker command line option ‘MO'.

4.2.3 Viewing code

Object code files produced by compiling or linking programs can be examined
using the binary lister tool 11ist. Information that can be displayed includes
procedure definitions, exported names, external references within the code, and
symbol data. For more details see chapter 20.

4.2.4 Making bootable programs

Code that has been linked to form a program cannot be loaded directly onto a
transputer evaluation board, for two reasons. Firstly, object code produced by
the linker and compiler tools contains extra information required by some tools.
This information must be removed before the program can be loaded. Secondly,
code to be run on a board which boots from link, such as the IMS B004, require
the addition of bootstrap information to load the program and start it running.

Extraneous data is removed, and a boot-from-link bootstrap is added, by the
collector tool icollect.

4.2.5 Loading and running programs

Bootable programs can be loaded onto the transputer evaluation board using
the host file server iserver (see chapter 22).

The server must be given a number of parameters when it loads a program. All
server options are two characters long, with ‘S’ as the first character. Server
parameters are removed from the command line by the server, so you should
avoid using the same options for your own program (it is best to avoid giving
programs two letter options beginning with the letter 's’).

To load a program use the ‘SB’ option and specify the file to be loaded. This
has the same effect as using options ‘SR’, ‘SS’, ‘SI’, and ‘SC’ together, that is,
it resets the board, provides access to host facilities such as file access and
terminal i/o, and loads the program. The ‘SI’ option directs the tool to display
progress information as it loads the file. To terminate when the transputer error
flag is set, thereby enabling the program to be debugged, add the server ‘SE’
option.

72 TDS 275 02 March 1991

4.3 Transputer types and classes 43

Programs can also be loaded onto transputer networks, without using code on
the root transputer, by first using the iskip tool to set up a skip process and
then loading the program using iserver. This can be useful when loading
programs onto external networks via a transputer evaluation board. It is also
useful for debugging programs that normally use the root transputer to run all or
part of a program. The debugger always runs on the root transputer. Provided
the network has at least one processor which is not used by the program, iskip
may be used in conjunction with iserver to load the program over the root
transputer. For details of skip loading see section 6.6.

4.3 Transputer types and classes

This section describes the meaning of transputer types and classes and how
selection of the target processor affects the compilation and linking stages of
program development. The section describes how to compile and link code
targetted at a single processor type and then describes how to compile and
link programs so that they can be executed on different processor types. The
examples used in this section follow on from the example introduced in chapter
3

4.3.1 Single transputer type

For those users who have a single transputer or indeed a network of transputers
all of the same type, the compilation and linking stages of program development
are very straighforward. Simply compile and link all your modules for the required
processor.

The compiler and linker both support command line options to select the following
processar types:

16-bit processors | T212, M212, T222, T225
32-bit processors | T400, T414, T425, T800, T801, T805

Example to compile and link for a T800:

oc simple -T800 (UNIX)
ilink simple.tco hostio.lib -T800 -f occamB.lnk

oc simple /T800 (MS-DOS/VMS)
ilink simple.tco hostio.lib /T800 /f occam8.lnk

The default target processor for both the compiler and linker is a T414, so if you
are using this processor type the steps are even simpler:

72 TDS 275 02 March 1991

44 4 Programming single transputers

Transputer | Processors which class can be run on
class
T2 T212, M212, T222, T225
T3 T225
T4 T414, T400, T425
T5 T400, T425
T8 T800, T801, T805
T9 T801, T805
TA T400, T414, T425, T800, T801, T805
B T400, T414, T425

Table 4.1 Transputer classes and target processor

oc simple (UNIX)
ilink simple.tco hostio.lib -f occama.lnk

oc simple (MS-DOS/VMS)
ilink simple.tco hostio.lib /f occama.lnk

4.3.2 Creating a program which can run on a range of transputers

The compiler and linker use the concept of transputer class to enable programs
to be developed which may be run on different transputer types without the need
to recompile.

A transputer class identifies an instruction set which is common to all the pro-
cessors in that class. When a program is compiled and linked for a transputer
class it may be run on any member of that class.

Note: Code created for a transputer class will often be less efficient than code
created for a specific processor type. Therefore, creating code for a transputer
class is discouraged in situations where program efficiency is a primary concern;
it should only be performed where there is a genuine need to produce code
which will run on a range of transputers or to reduce the size of a support library,
where program efficiency is not a major concern.

Table 4.1 lists all the transputer classes which the compiler and linker support
and indicates which processors the program can be run on.

In order to develop a program which will run on different processor types, perform
the following steps:

72 TDS 275 02 March 1991

4.3 Transputer types and classes 45

1 ldentify the processors on which the program is to run.

2 Using table 4.1 select the class which may be run on all the target pro-
CESSOors.

3 Compile and link all the program modules for this class.

For example to create a program which will run on both a T400 and a T425,
compile and link for transputer class T5:

oc simple -T5 (UNIX)
ilink simple.tco hostio.lib -T5 -f occama.lnk

oc simple /T5 (MS-DOS/VMS)
ilink simple.tco hostio.lib /T5 /f occama.lnk

Alternatively to create a program which will run on a T400, T425 or a T800,
compile and link for transputer class TA.

oc simple -TA (UNIX)
ilink simple.tco hostio.lib -TA -f occama.lnk

oc simple /TA (MS-DOS/VMS)
ilink simple.tco hostio.lib /TA /f occama.lnk

Programs compiled for the T212, M212 or T222 transputers, which make up
class T2, can be run on a T225 (class T3) because a T225 has a similar but
larger instruction set than class T2 transputers. Similarly code compiled for a
T414 (class T4) may be run on a T400 or T425, which form class T5. The
T400 and T425 have additional instructions to those of the T414. Likewise, code
compiled for a T80O (class T8) may be run on a T801 or T805, which form class
T9. Again the T801 and T805 have additional instructions to those of the T800.

4.3.3 Mixing code compiled for different targets
This section describes how object code compiled for one target processor or
transputer class can call and be linked with code compiled for different transputer

types or classes.

The ability to do this provides the user with greater flexibility in the use of program
modules:

e An individual module can be compiled once e.g. for class T4, and then

be called by separate programs to run on different processor types e.g.
T414 and T425.

72 TDS 275 02 March 1991

46 4 Programming single transputers

e When the user is preparing a library for use by programs intended to
run on different processor types, a single copy of code compiled for a
transputer class can be inserted instead of multiple copies for specific
transputers.

When linking a collection of compiled units together into a single linked unit,
the user must select a specific transputer type or transputer class on which the
linked unit is to run. As before, this determines the set of transputer types on
which the code will run. When linking for a particular type or class, the linker
will accept compilation units compiled for a compatible class. Table 4.2 shows
which transputer classes the linker will accept when linking for a particular class.

Link | Transputer classes which
class | may be linked

T2 | T2

T3 | T3, T2

T4 | T4,TB, TA

T5 | T5, T4, TB, TA

T8 | T8
T9 |T9, T8
TB | TB, TA
TA | TA

Table 4.2 Linking transputer classes

For example if the target processors are a T400 and a T425 the user may compile
for classes T5 and TB and link the code for class T5.

Code for a different transputer class can be included in the final linked unit, as
long as :

- it uses the instruction set, or a subset of the instruction set, of the link
class.

- the calling conventions are the same, (see below).

The same rules must also be followed during the program design stage, when
deciding which modules should call each other. Code for a different transputer
class can be called provided that it uses the instruction set or a subset of the
instruction set of the calling class. This is because the compiler needs to know
which modules to select from libraries containing copies for different processor
types.

72 TDS 275 02 March 1991

4.3 Transputer types and classes 47

Hence the headings in table 4.2 can be modified slightly to produce table 4.3
which identifies for each class the list of possible classes which it may call.

Calling | Transputer classes which
class | may be called

T2 T2

T3 T3, T2

T4 T4, TB, TA

T5 T5, T4, TB, TA

T8 T8
T9 T9, T8
B TB, TA
TA TA

Table 4.3 Calling transputer classes

In addition, the order in which the program modules are compiled is affected,
in that a module which is called must be compiled before the calling module is
compiled. This is explained in section 4.9 and an example is given in section
4.12.

Classes T8 and T9 cannot call or be linked with class TA; this is a change from
the IMS D705/D605/D505 versions of the toolset. The reason why these classes
cannot be linked together is explained in section 4.3.4, which gives details of the
differences between the instruction sets, as additional information.

A library can be made consisting of the same modules compiled for different
transputer types or classes. The user then needs only to specify the library file
to the linker, and the linker will choose a version of a required routine which is
suitable for the system being linked.

The linker uses the rules given in table 4.2 to determine whether a compiled
module, found in a library, is suitable for linking with the current system. So, for
example, to create a library which may be linked with any transputer class or
specific transputer type, all routines could be compiled for classes T2, TA and
T8.

If there are a number of possible versions of a module in a library the best one
(i.e. the most specific for the system being linked) is chosen.

72 TDS 275 02 March 1991

48

4 Programming single transputers

4.3.4

Classes/instruction sets — additional information

The instruction sets of the transputer classes differ in the following ways:

Classes T2 and T3 support 16-bit transputers whereas all the other trans-
puter classes support 32-bit transputers.

Class T3 is the same as class T2 except that T3 has some extra instruc-
tions to support CRC and bit operations and includes special debugging
functions.

Class T5 is the same as class T4 except that T5 has extra instructions
to perform CRC, 2D block moves, bit operations and special debugging
functions.

Class T9 is the same as class T8 except T9 has additional debugging
instructions.

The T800, T801 and T805 processors use an on-chip floating point pro-
cessor to perform REAL arithmetic. Thus a large number of floating point
instructions are available for these transputers and for their associated
classes T8 and T9. These instructions are listed in part 2, section B.6.

For the T414, T400 and T425 processors i.e. transputer classes T4 and
T5 the implementation of REAL arithmetic is in software. These trans-
puters make use of a small number of floating point support instructions
listed in part 2, section B.5.

The instruction set of class TA only uses instructions which are common
to the T400, T414, T425, T800, T801 and T805 transputers. Therefore
it does not use the floating point instructions, the floating point support
instructions or the extra instructions to perform CRC, 2D block moves or
special debugging or bit operations.

The instruction set of class TB only uses instructions which are common
to the T400, T414 and T425 processors. Therefore it uses the float-
ing point support instructions, but does not use the extra instructions to
perform CRC, 2D block moves or special debugging or bit operations.

Note: code which includes CRC, 2D block moves and floating point operations
implemented by ASM or GUY code cannot be compiled for classes TA or TB. The
compiler will report an error if this is attempted.

When considering the similarities and differences in the instruction sets of differ-
ent transputer classes it helps to divide them into the three separate structures
as shown in figure 4.2.

72 TDS 275 02 March 1991

4.3 Transputer types and classes 49

T2 @ T8
] ® [

T4
Direction of
permitted
calls
T5

Figure 4.2 Structures for mixing transputer types and classes

By comparison with tables 4.2 and 4.3 it can be seen that a module may only
call and be linked with modules compiled for a transputer class which belongs
to the same structure.

Classes T2 and T3 which form the first structure are targetted at 16-bit transput-
ers so it is obvious that they cannot be linked with the other classes which are
all targetted at 32-bit transputers.

The reason why classes T8 and T9 cannot call or be linked with classes TA,
TB, T5 or T4 is because floating point results from functions are returned in a
floating point register for T8 and T9 code and in an integer register for all other
32-bit processors. Even if your code does not perform real arithmetic, linking
code compiled for a T9 or T8 with code compiled for any of the other classes is
not permitted.

To summarise, compiling code for the transputer classes TA and TB enables it
to be run on a large number of transputer types, however, the code may not
be as efficient as code compiled for one of the other transputer classes or for a
specific transputer type. For example compiling code for class T5 enables the
CRC and 2D block move instructions to be used, whereas these instructions are
not available to code compiled for classes TA and TB.

72 TDS 275 02 March 1991

50 4 Programming single transputers

4.4 Error modes

For systems that require maximum security and reliability, the error behaviour is
of great concern. 0ccam 2 specifies that run-time errors are to be handled in
one of three ways, each suitable for different programs. The error mode to be
used is supplied as a parameter to both the compiler and linker. The options are
listed in table 4.4.

Option(s) | Description
H HALT mode
S STOP mode
X UNIVERSAL mode

Table 4.4 Compiler and linker options for selecting error mode

The first mode, called HALT system mode, causes all run-time errors to bring the
whole system to a halt promptly, ensuring that any errant part of the system is
prevented from corrupting any other part of the system. This mode is extremely
useful for program debugging and is suitable for any system where an error is
to be handled externally. HALT system mode is the default for the compiler, and
you should use this mode when you may want to use the debugger.

Note: on the IMS T414, T222 and M212, HALT mode does not work for pro-
cesses running at high priority, as the HaltOnError flag is cleared when going
to high priority.

The second mode, called STOP mode, allows more control and containment of
errors than HALT mode. This maps all errant processes into the process STOP,
again ensuring that no errant process corrupts any other part of the system. This
has the effect of gradually propagating the STOP process throughout the system.
This makes it possible for parts of the system to detect that another part has
failed, for example, by the use of ‘watchdog’ timers. It allows multiply-redundant,
or gracefully degrading systems, to be constructed.

The third mode, called UNIVERSAL mode, may behave as either HALT or STOP
mode depending on the transputer’s Halt-On-Error flag. For example if a library is
compiled in UNIVERSAL mode, it may be linked in HALT mode with HALT mode
modules and it will behave as if it had been compiled in HALT mode. Alternatively
if it is linked in STOP mode with STOP mode modules it will behave as if it had
been compiled in STOP mode.

If a program, targetted at a single processor, is compiled and linked in UNIVER-
SAL, the collector tool will treat the linked unit as though it had been linked in
the default error mode which is HALT mode.

All separately compiled units for a single processor must be compiled and linked

72 TDS 275 02 March 1991

4.4 Error modes 51

with compatible error modes. Where a library is used the module of the appro-
priate error mode will be selected.

Code which is compiled in either HALT or STOP mode can call code compiled
in UNIVERSAL mode, however code compiled in UNIVERSAL mode may only
call code which has also been compiled in UNIVERSAL mode. Code which has
been compiled in HALT mode may not call or be called by code compiled in
STOP mode. The linker will report an error if user attempts to link HALT and
STOP modules together.

4.4.1 Error detection

In some circumstances it may be desirable to omit the run time error checking
in one part of a program, for example, in a time-critical section of code, while
retaining error checks in other parts of a program, for debugging purposes.

The compiler provides three command line options to enable the user to control
the degree of run time error detection; they are the 'K’, 'U’ and ‘NA’ options
and they prevent the compiler from inserting code to explicitly perform run time
checks.

These options should only be used on code which is known to be correct. The
compiler does not insert a lot of error checking code so it should only be disabled
as a last resort.

It is the user's responsibility to ensure that errors cannot occur. The ability to
disable certain error checking code by using the ‘K’ and ‘U’ options should not
be abused in an attempt to use illegal code, since there is no way of telling the
compiler to ignore all errors.

The ‘K’ option disables the insertion of code to perform run time range checking.
In this context range checking only includes checks on array subscripting and
array lengths. Note: in any situation where the compiler can detect a range
check error without specifically adding code, it may still do so. The type of
situation where this is likely to happen is when an array subscript such as [z + j]
is used, and 1 + 7 overflows.

The ‘U’ option disables the insertion of code whose only purpose is to detect
some kind of error. This option is stronger than the ‘K’ option, and includes the
‘K’ option, so it is not necessary to use both options together. (Note: that the
‘U’ does not include the ‘NA’ option which is described below).

The ‘U’ option will disable the insertion of run-time checks to detect occurrences
such as the following:

72 TDS 275 02 March 1991

52 4 Programming single transputers

negative values in replicators

errors in type conversion values,

errors in the length of shift operations,

zero length moves,

array range errors,

errors in replicated constructs such as SEQ, PAR, IF and ALT.

Note: again in any situation where the compiler can detect an error without
specifically inserting code, it may still do so. Thus arithmetic overflows, etc, can
still cause an error. (To avoid overflow errors the operators PLUS, MINUS and
TIMES can be used).

If the ‘U’ option is used in conjunction with HALT mode, it will prevent explicit
checking for floating point errors in those cases where library calls are not used
to perform floating point arithmetic (see below). In addition if the ‘U’ option is
used with STOP or UNIVERSAL mode, it inhibits the ability of the system to
gradually propagate a STOP process throughout the system. This means that
the ‘U’ option, when used with any error mode produces identical code. The
object file, however, is still marked as being compiled in a particular error mode.

Thus, faster code is produced by using the ‘U’ option with any error mode. Any
libraries which are linked with the modules will maintain the error mode and level
of error detection that they were compiled for. In practice, libraries compiled in
HALT mode will be fastest, so for benchmarking, modules should be compiled
in HALT mode and the ‘U’ option used.

If the user requires the equivalent of the UNIVERSAL error mode implemented
by the IMS D705/D605/D505 versions of the toolset, then UNIVERSAL error
mode should be used and the ‘U’ option specified. However, the compiler will
not incorporate library entries compiled with the ‘U’ option.

The following points summarise the differences in the implementation of error

detection between the current release and previous releases of the toolset i.e
the IMS D705/D605/D505 toolsets.

72 TDS 275 02 March 1991

4.5 Interactive debugging 53

Comparison of error modes with the IMS D705/D605/D505 toolsets

The detection of errors and the action that is taken when an error is detected
are separated in the current toolset.

HALT and STOP mode behave the same as they did in the previous toolsets.

UNIVERSAL mode no longer turns error detection off, instead it produces
code which may be linked in either HALT or STOP mode.

The degree of run-time checking may be reduced by using the ‘K’ and ‘U’
command line options.

To obtain the equivalent of the UNIVERSAL mode implemented by the IMS
D705/D605/D505 toolsets, compile in UNIVERSAL mode and use the ‘U’ op-
tion. Note: this will not cause the compiler to incorporate libraries compiled
with the ‘U’ option.

To obtain the equivalent of occam UNDEFINED mode (see the ‘occam 2
Reference Manual’), compile in any error mode and use the ‘U’ option.

The 'NA' option disables the insertion of code to check calls to ASSERT.

The occam 2 compiler recognises a procedure ASSERT with the following pa-
rameter:

PROC ASSERT (VAL BOOL test)

At compile time the compiler will check the value of test and if it is FALSE the
compiler will give a compile time error; if it is TRUE, the compiler does nothing. If
test cannot be checked at compile-time then the compiler will insert a run-time
check to detect its status. The ‘NA’ option can be used to disable the insertion
of this run-time check.

4.5 Interactive debugging

The compiler and linker tools support interactive debugging by default. When in-
teractive debugging is enabled the compiler or linker will generate calls to library
routines to perform channel input and output rather than using the transputer's
instructions. This does cause a performance penalty to be incurred when in-
teractive debugging is enabled. Disabling interactive debugging by using the
command line option ‘Y’ results in faster code execution.

Interactive debugging must be enabled in order to use the interactive features of
the debugger. However, the debugger does not have to be present in order to
run the code.

72 TDS 275 02 March 1991

54 4 Programming single transputers

Code which has interactive debugging disabled may call code which has inter-
active debugging enabled but not vice versa. If interactive debugging is disabled
for any module in a program this will prevent the whole program from being
debugged interactively.

4.6 Alias and usage checking

The compiler implements the alias and usage checking rules described in the
‘occam 2 Reference Manual'. Alias checking ensures that elements are not
referred to by more than one name within a section of code. Usage checking
ensures that channels are used correctly for unidirectional point-to-point commu-
nication, and that variables are not altered while being shared between parallel
processes. For a further discussion of the rationale behind these rules, see sec-
tions 25.13 and 25.14. Information is also given in The Transputer Applications
Notebook — Architecture and Software, Chapter 6 — The development of 0occam
2

Alias and usage checking during compilation may be disabled by means of the
compiler options ‘A’ and 'N'. Using the ‘N’ option it is possible to carry out alias
checking without usage checking. However, it is not possible to perform usage
checking without alias checking, as the usage checker relies on lack of aliasing
in the program. If you switch off alias checking with option ‘A’, usage checking
is automatically disabled.

The 'K' and ‘U’ options will also disable the insertion of alias checks that would
otherwise be performed at run-time. These options do not affect the insertion of
alias checks at compile time nor the insertion of usage checks which are only
performed at compile time.

Alias checking can impose some code penalties, for example, extra code is
inserted if array accesses are made which cannot be checked until runtime.
The WO’ command line option will produce a warning message every time one
of these checks is generated. However, alias checking can also improve the
quality of code produced, since the compiler can optimise the code if names in
the program are known not to be aliased.

The compiler usage check detects illegal usage of variables and channels, for
example, attempting to assign to the same variable in parallel. The compiler
performs most of its checks correctly, but with certain limitations. Normally,
if it is unable to implement a check exactly, it will perform a stricter check. For
example, if an array element is assigned to, and its subscript cannot be evaluated
at compile time, then the compiler assumes that all elements of the array are
assigned to. If a correct program is rejected because the compiler is imposing
too strict a rule, it is possible to switch off usage checking.

72 TDS 275 02 March 1991

4.7 Using separate vector space 55

It should also be noted that usage checking can slow the compiler down. For
example, programs which contain replicated constructs defined with constant
values for the base and count, will be checked for each iteration of the rou-
tine. Replicated constructs which have variable base and count values are only
checked once with a stricter check, because the compiler cannot evaluate, at
this point, the actual limits of the replication.

4.7 Using separate vector space

The compiler normally produces code which uses separate vector space. Arrays
which are declared within a compilation unit are allocated into a separate ‘vector
space' area of memory, rather than into workspace when they are either:

e greater than 8 bytes or

¢ greater than 1 word, where the elements are smaller than a word (e.g.
[5]1BTYE).

This decreases the amount of stack required, which has two benefits: firstly,
the offsets of variables are smaller, access to them is faster; secondly, the total
amount of stack used is smaller, allowing better use to be made of on-chip RAM.

The compiler option ‘v disables the use of a separate vector space, in which
case arrays are placed in the workspace.

When a program is loaded onto a transputer in a network, memory is allocated
contiguously, as shown in figure 4.3.

This allows the workspace (and possibly some of the code) to be given priority

use of the on-chip RAM. Generally, the best performance will be obtained with
the separate vector space enabled.

The default allocation of an array can be overridden by an allocation immediately
after the declaration of an array. This allocation has one of the forms:

PLACE name IN VECSPACE :

or PLACE name IN WORKSPACE

For example, in a program which is normally using the separate vector space,
it may be advantageous to put an important buffer into workspace, so that it is
more likely to be put into internal RAM. The program would be compiled with

72 TDS 275 02 March 1991

58 4 Programming single transputers

Separate compilation units may be nested to any depth and may contain
#INCLUDE directives. They may also use libraries, as described in section 4.11.

A separate compilation unit must be compiled before the source which references
it can be compiled.

4.91 Sharing protocols and constants

occam constants and protocols may be declared and used within a compilation
unit according to the rules of the language. Where a constant and/or protocol is
to be used across separate compilation boundaries, it should always be placed
in a separate file. The file should be referenced in any compilation unit where it
is needed, by using the #INCLUDE directive before any #USE directive, which
introduces procedures using the protocol in their formal parameter lists. Proto-
cols will also need to be referenced in any enclosing compilation unit (because
the channels will either be declared there or passed through). For example,
suppose we have a protocol P defined in a file myprot.inc. We might then
use it as follows:

PROC main ()
#INCLUDE "myprot.inc"
#USE "mysc.tco"

CHAN OF P actual.channel :
PAR
do.it (actual.channel)

The separately compiled procedure do. it, in the file mysc.oce, would look
like this:

#INCLUDE "myprot.inc" =-- declares protocol P
PROC do.it (CHAN OF P in)

SEQ
... body of procedure

Since the protocol name P occurs in the formal parameter list of the separately
compiled procedure do.it, the compilation unit must include a #INCLUDE
directive, preceding the declaration of do. it, to introduce the name P.

72 TDS 275 02 March 1991

4.10 Using imakef 59

4.9.2 Compiling and linking large programs

Building a program which includes separate compilation units and library ref-
erences is straightforward. Separate compilation units in the program can be
compiled individually by applying the compiler to them. Nested compilation units
must be compiled in a bottom-up order before the top level of the program is
compiled; finally the whole program is linked together.

Separate compilation units must be compiled before the unit which references
them can be compiled. This is because the object code contains all the infor-
mation about a unit (names, formal parameters, workspace and code size, etc.)
which is needed to arrange the static allocation of workspace and to check cor-
rectness across compilation boundaries. This informaticn may be viewed using
the ilist tool.

When a program is linked the code for all the separate compilation units in the
program is copied into a single file. In addition, code for any libraries used is
included in the file. Where libraries contain more than one module, only those
modules containing routines actually required in a program are linked into the
final code. This helps to minimise the size of the linked code.

The target processor or transputer class and error mode must be specified to the
linker to enable it to select appropriate library modules. Only one processor type
or class may be used for the linking process and this must be compatible with
the transputer type or class used to compile the modules. The error mode used
for the linking process must also be compatible with the error mode(s) used to
compile the modules. Compatible use of the compiler and linker ‘¥’ option must
also be adopted for the modules to be linked.

If there are a large number of input modules, they may be supplied to the linker,
within an indirect file, as a list of flenames. Indirect files may also contain
directives fo the linker. Linker directives enable the user to customise the linkage
operation and include facilities to modify the use of workspace, create forward
references to symbols and to nest indirect files. Chapter 19 provides detailed
information of how to run and use the linker.

410 Using imakef

When a change is made to part of a program it is necessary to recompile the
program to create a new code file reflecting the change. The purpose of the
separate compilation system is to split up a program so that only those parts of
the program which have changed or which depend on the changed units, need to
be recompiled, rather than needing to recompile the whole program. However,
it would be tedious to have to remember which modules had been edited, which
modules might be affected by calls and the order in which the modules were

72 TDS 275 02 March 1991

60 4 Programming single transputers

compiled and linked. For this reason a Makefile generator imakef is supplied
with the toolset and may be used to assist with building programs consisting of
several modules. This tool, when applied to a program (or part of a program),
compiles a list of dependencies of compilation units and uses this list to produce
a Makefile. The Makefile can be used with a suitable MAKE program to recompile
only the changed parts of a program. This ensures that compilation units will
always be recompiled where a change has made this necessary.

To use the Makefile generator you must tell it the name of the file you wish to
build. The tool can produce a Makefile for any type of file that can be built with
the toolset tools. In order for imake£ to be able to identify file types, a different
system of file extensions must be used to that used in this chapter. The file
name rules for imake£ are described in chapter 21 together with details of how
to use the tool.

4.11 Libraries

A library is a collection of compiled procedures and/or functions. Any number
of separately compiled units may be made into a library by using the librarian.
Separately compiled units and libraries can be added to existing libraries. Each
compilation unit is treated as a separately loadable module within a library. When
compiling or linking, only modules which are used by a program are loaded. The
rules for selective loading are described in the following section.

Libraries are referenced from 0ccam source by the #USE directive. For exam-
ple:

#USE "hostio.lib" -- host server library

The filename is enclosed in quotes. The rest of the line, following the closing
quote, may be used for comments. Directives must occupy a single line.

Libraries should always use a .1ib file extension, and this must always be
supplied in a #USE directive.

4.11.1 Selective loading

Each module (separately compiled unit) in a library is selectively loadable by the
linker; i.e. parts of a library not used or unusable by a program are ignored.
The unit of selectivity is the library module; i.e. if one procedure or function of a
library module is used then all the code for that module is loaded.

The compiler is selective when a library is referenced. Only modules of a library
that are of the same, or compatible, transputer type or class, error mode and

72 TDS 275 02 March 1991

411 Libraries 61

method of channel input/output, are read (see sections 4.3, 4.4 and 4.5).
Selective loading is based on the following rules:

1 The transputer type or class of a library module must be the same as, or
compatible with, the code which could use it.

2 The error mode of the library module must be the same as, or compatible
with, the code which could use it.

3 The interactive debugging mode (i.e. whether interactive debugging is
enabled or not) of the library must be the same, or compatible with, the
code which could use it.

4 At least one routine (entry point) in a module is called by the code.

Rules 1 to 3 apply to the compiler. All the rules are used by the linker. The
compiler only selects on transputer type, error mode and method of channel
input/output. It is not until the linking stage that unused modules are rejected.
For details on mixing processor classes and error modes see sections 4.3 and 4.4
respectively.

4.11.2 Building libraries

Libraries are built using the librarian tool 11ibr. Libraries can be created from
either separately compiled units (. teco or library files . 1ib) or from linked units
(-1ku files) but not a combination of both. The librarian takes any number of
input files and combines them into a single library file. Each separately compiled
unit forms a single module in the library.

When forming a library the librarian will warn if there are multiply defined routines
(entry points). In other words, for each combination of transputer type, error
mode and method of channel input/output there may only be one routine with a
particular name. For further information on building libraries see chapter 18.

As an example consider building a library called mylib.1lib. The source of
this library is contained in a file called mylib.ocec and has been written to
be compilable for both 16 and 32 bit transputers. We want the library to be
available for T212 and T800 processors in halt on error mode only. Having
compiled the source for the two processors we will have two files, for example:
mylib.t2h and mylib.t8h. To form a library from these compilation units
use the following command line:

ilibr mylib.t2h mylib.t8h

72 TDS 275 02 March 1991

62 4 Programming single transputers

When an output filename is not specified, as in this example, the librarian uses
the first file in the list to make up the output file name and adds the extension
.1ib. In this case it will write the library to the file mylib.1lib.

The librarian can also take an indirect file containing a list of the files to be built
into the library. Such files should have the same name as the library, but with a
. 1bb file extension. So, still using the above example, if the names of the files
to make up the library were put in a file called mylib. 1bb, we could then build
the library using one of the following commands:

ilibr -f mylib.lbb -o mylib.lib (UNIX)
ilibr /f mylib.lbb /o mylib.lib (MS-DOS/VMS)

Compiled modules can be added to an existing library file. However, if the
librarian attempts to create an output file with the same name as an input library
file, an error will be produced. This can be avoided by specifying a different
output filename using the ‘o’ option. Alternatively if one on the compiled modules
to be added to the library has a different name, this could be specified first on
the command line. Once the new library file has been created it can be renamed
if necessary. Adding modules to an existing library does not require programs
which call it, to be recompiled, provided it is given its original name in its final
form.

The Makefile generator imakef can be used to assist with the building of li-
braries. This is particularly useful where libraries are nested within other libraries
or compilation units, because imakef£ can identify the dependencies of libraries
on other modules or separately compiled units. For further information about the
imakef tool see chapter 21.

For further details of how to use the librarian and how to optimise libraries see
chapter 18.

4.12 Example program — the pipeline sorter
This section introduces an example which serves to show how a large program

might be structured, in terms of separate compilation units, libraries, and a shared
protocol.

4.12.1 Overview of the program

The program sorts a series of characters into the order of their ASCII code
values.

Figure 4.4 shows the basic structure of this program. There are three processes:

72 TDS 275 02 March 1991

412 Example program — the pipeline sorter 63

Figure 4.4 Basic structure of sorter program

the input process, the output process and the sorter process. We can decom-
pose the sorter process by using a pipeline structure. This uses the algorithm
described in ‘A tutorial introduction to occam programming’. If we design the
pipeline carefully we can ensure that each element of the pipeline is identical to
all the other elements. The pipeline is served by an input process, which reads
characters from the keyboard, and an output process which writes the sorted
characters to the screen. Figure 4.5 shows the structure of the program using a
pipeline.

element
0

Figure 4.5 Pipeline of n elements

An obvious implementation would be to write an 0ccam process for each pro-
cess in figure 4.5, using a replicated process for the pipeline. Communication
between the processes is via 0CCam channels and to aid program correctness
we should use an occam PROTOCOL for these channels. This protocol must
be shared by all the processes. As the 0ccam compiler compiles processes
(PROCs) and as each of the processes is independent we can implement each
one as a separately compiled unit. The processes share a common protocol
and the best way to ensure consistency is to place the protocol in a separate file
and use the #INCLUDE mechanism to access it. These processes can then be
called in parallel by an enclosing program which can access the code of each
process by the #USE mechanism.

There is a problem with this implementation because two processes require
access to the host file server. The host file server is accessed via a pair of
occam channels and occam does not allow the sharing of channels between
processes. There are a number of ways around this problem. One solution is to
use a multiplexor process for the server channels, as described in section 8.5.
Another solution is to merge the two processes into a single process. This
solution is used because the program accesses the server in a sequential manner
(read a line then display sorted line, read a line etc.). Figure 4.6 gives the final

72 TDS 275 02 March 1991

64 4 Programming single transputers

process diagram for the program.

element
0

Figure 4.6 Program with combined input/output process

The implementation can be split into four files:

element.occ the pipeline sorting element
inout.occ the input/output process
sorter.occ the enclosing program

sorthdr.inc the common protocol definition

Figure 4.7 shows the way these files are connected together to form a program.

sorter
#INCLUDE)) #USE
#USE
element inout
| #INCLUDE
sorthdr # INCLUDE

Figure 4.7 File structure of program

The source of the program is given below and is supplied in the ‘examples’
directory. You can either copy these files to a working directory or you can
type in the source as given below. For details of the toolset directories see the
Delivery Manual that accompanies the shipment.

Two other files are required to complete the program. These are the host file

server library hostio. 1ib and the correspending . inc file containing the host
file server constants.

72 TDS 275 02 March 1991

4.12 Example program — the pipeline sorter 65

4.12.2 The protocol

Declarations of constants and channel protocols are contained in the include file
sorthdr. ine, which is listed below.

PROTOCOL LETTERS
CASE
letter; BYTE
end.of.letters
terminate

VAL number.elements IS 100:

This declares a protocol called LETTERS, which permits three different types of
message to be communicated:

letter - followed by the character to be sorted.
end.of.letters - marks the end of the sequence to be sorted.

terminate - signals the end of the program.

The constant number.elements is also declared. This defines both the num-
ber of sorting elements in the pipeline and the maximum length of the sequence
of characters that can be sorted.

4.12.3 The sorting element
The sorting element element . occ is listed below:
#INCLUDE "sorthdr.inc"

PROC sort.element (CHAN OF LETTERS input, output)

BYTE highest:
BOOL going:

SEQ
going := TRUE
WHILE going
input ? CASE
terminate
going := FALSE

72 TDS 275 02 March 1991

66 4 Programming single transputers

letter; highest

BYTE next:

BOOL inline:

SEQ
inline := TRUE
WHILE inline

input ? CASE
letter; next

IF
next > highest
SEQ
output ! letter; highest
highest := next
TRUE

output ! letter; next
end.of.letters
SEQ
inline := FALSE
output ! letter; highest
output ! end.of.letters
output ! terminate

This program consists of two loops, one nested inside the other. The outer
loop accepts either a termination signal or a character sequence for sorting. If it
receives a character it enters the inner loop. The inner loop reads characters until
it receives an ‘end of letters’ signal, signifying the end of the string of characters
to be sorted. The sort is performed by storing the highest (ASCII) value character
it receives and passing any lesser (or equal) characters on to the next process.
The ‘end of letters’ tag causes the stored value to be passed on and the inner
loop terminates.

The maximum number of characters which can be sorted is determined by the
number of sorter processes. One character is sorted per process.

4.12.4 The input/output process

This process consists of a loop which reads a line from the keyboard, then
sends the line to the sorter and, in parallel, reads the sorted line back. It then
displays the sorted line. If the line read from the keyboard is empty the loop is
terminated. At the end of the process the host file server is terminated with the
success constant sps. success, which is defined in the file hostio. inc.

If any i/o errors occur the program will stop, allowing it to be examined by the
debugger.

72 TDS 275 02 March 1991

4.12 Example program — the pipeline sorter 67

The input/output process inout .occ is listed below.

#INCLUDE "sorthdr.inc"
#INCLUDE "hostio.inc"

PROC inout (CHAN OF SP fs, ts,
CHAN OF LETTERS from.pipe, to.pipe)

#USE "hostio.lib"

[number.elements - 1]BYTE line, sorted.line:
INT line.length, sorted.length:

BYTE result:

BOOL going:

SEQ

so.write.string.nl (fs, ts,

"Enter lines of text to be sorted *

*- empty line terminates")

going := TRUE

WHILE going

SEQ
so.read.echo.line(fs, ts, line.length,

line, result)

IF
result <> spr.ok
STOP -- stop if an error occurs
TRUE
so.write.nl (fs, ts)
PAR
SEQ
IF
(line.length = 0) -- no more input
to.pipe ! terminate
TRUE
SEQ

SEQ i = 0 FOR line.length
to.pipe ! letter; line[i]
to.pipe ! end.of.letters
BOOL end.of.line:

SEQ
end.of.line := FALSE
sorted.length := 0

WHILE NOT end.of.line
from.pipe ? CASE
terminate

72 TDS 275 02 March 1991

68 4 Programming single transputers

SEQ
end.of.line := TRUE
going := FALSE
letter; sorted.line[sorted.length]
sorted.length := sorted.length + 1
end.of.letters
SEQ
so.write.string.nl(fs, ts,
[sorted.line FROM 0
FOR sorted.length])
end.of.line := TRUE
so.exit(fs, ts, sps.success) -- terminate server

4.12.5 The calling program

This process calls the input output process in parallel with the sorter elements,
in a pipeline. The memoxry parameter must be declared, but the program does
not use it.

The calling program sorter.occ is listed below.

#INCLUDE "hostio.inc"

PROC sorter (CHAN OF SP fs, ts, []INT memory)

#USE "hostio.lib" =-- host i/o library
#INCLUDE "sorthdr.ing"

#USE "inout" -- separately compiled units
#USE "element"

[number.elements + 1]CHAN OF LETTERS pipe:
PAR -- run pipe between i/o processes
inout (fs, ts, pipel[number.elements], pipe[0])
PAR i = 0 FOR number.elements
sort.element (pipe[i], pipel[i + 11)

4.12.6 Building the program

To build the program, first compile each component of the program separately,
link them together, and add bootstrap code to the main compilation unit.

72 TDS 275 02 March 1991

4.12 Example program — the pipeline sorter 69

The program’s components must be compiled in a bottom up fashion, that is,
element .occ and inout . occ first (in either sequence), followed by the main
program sorter.occ

First, compile the sorting element element . oce using the following command:

oc element

The file extension can be omitted on the command line because the source file
has the conventional extension .occ.

The compiler produces a file called element.tco, compiled for a T414 in
HALT mode.

Compile the input/output process using the following command:
oc inout

The compiler will produce a file called inout . tco, compiled fora T414 in HALT
mode.

Then compile the main body using the command line:
oc sorter

The compiler will produce a file called sorter.tco, compiled for a T414 in
HALT mode.

Having compiled all the components of the program you can now link them
together to form a whole program. Any libraries used by the program must also
be specified to the linker. The library hostio.1lib is the server library used
by this program. Remember the include file, occama . 1nk, which identifies the
other libraries, such as compiler libraries, required in the linking process. (See
section 4.2.2). To link the files use one of the following commands:

ilink sorter.tco inout.tco element.tco hostio.lib -f occama.lnk
ilink sorter.tco inout.tco element.tco hostio.lib /f occama.lnk

When specifying options for any of the tools remember to use the correct prefix
character for your version of the toolset (‘-' for UNIX implementations, and ‘/’
for the IBM PC and VAX/VMS implementations).

The linker will create the file sorter.lku linked for a T414 in HALT mode.

If a main entry point is not specified, the linker uses the first valid entry point
that it encounters in the input. Therefore, in the above example, it is important

72 TDS 275 02 March 1991

70 4 Programming single transputers

to list the file ‘sorter.tco’ first. A main entry point may be specified within
an indirect file using the linker directive #mainentry or on the command line
using the ‘ME’ option.

Before you can run the program you must add bootstrap code. To do this use
the collector tool icollect, using one of the following command lines:

icollect sorter.lku -t (UNIX)
icollect sorter.lku /t (MS-DOS/VMS)

The ‘t’ option informs the collector tool that the input file is a linked unit rather
than the output of the configurer tool. (The configurer is used for multi-processor
applications).

The collector tool will create the files sorter.btl and sorter.cfb. The
.bt1l file contains the bootable program code. The .c£b file is a configura-
tion binary file which is created by icollect as a by-product of creating the
bootable file; it is redundant as far as this example is concerned.

To run the program on a transputer board use one of the following commands:

iserver -se -sb sorter.btl (UNIX)
iserver /se /sb sorter.btl (MS-DOS/VMS)

The 'sb’ option specifies the file to be booted and loads the program onto the
transputer board. It has the effect of resetting the board, opening communication
with the host, and loading the program onto the network. The ‘se’ option directs
the server to terminate if the program sets the error flag. For more details about
the server options see chapter 22.

The program reads characters from the keyboard, sorts the line and redisplays
it. The program will run until input is terminated by typing RETURN on an empty
line.

Figure 4.8 shows an example of the screen display, obtained by running
sorter.btl on a UNIX based toolset. The user inputs the string ‘Sorter
program * and terminates the program by pressing RETURN.

iserver -se -sb sorter.btl
Enter lines of text to be sorted - empty line terminates

Sorter program
Saegmooprrrrt

Figure 4.8 Example output produced by running sorter.btl.

72 TDS 275 02 March 1991

4,12 Example program — the pipeline sorter 71

To run the program using the simulator use one of the following commands:

isim -bg sorter.btl (UNIX)
isim /bg sorter.btl (MS-DOS/VMS)

The ‘bg’ option specifies batch quiet mode which causes the simulator to run the
program and then terminate. For more details about how to use the simulator
see chapter 23.

4.12.7 Automated program building

The imakef tool can be used to automate the development process. From the
above example it can be seen that there are many steps to go through when
building a program of any size. Some of these steps must be performed in a
specific order and if part of the program were changed then all affected parts
must be recompiled and relinked etc.

MAKE is a common tool for building programs. It uses information about when
files were last updated, and performs all the necessary operations to keep object
and bootable files up to date with changes in any part of the source. Makefiles
are the standard method of providing the MAKE program with the information it
needs. ‘

The occam toolset is designed in such a way that it is possible for a tool to
construct Makefiles to build occam programs. The Makefile generator imakef
produces Makefiles in a format acceptable to most MAKE programs.

imakef requires the user to adopt a particular convention of file extensions.
The user then cnly has to specify the target file he requires i.e. a bootable
file and imakef£, using its knowledge of file names rules, creates a suitable
Makefile. This file has full instructions on how to build the program.

By running the MAKE program for the file the entire program will be automatically
compiled, linked and made bootable, ready for loading onto the transputer.

For more details about the imakef£ tool and an example of how to create a
makefile for the pipeline sorter program used in this chapter, see chapter 21.

72 TDS 275 02 March 1991

72 4 Programming single transputers

72 TDS 275 02 March 1991

5 Configuring transputer
networks

This chapter describes how to build programs that run on networks of transputers.
It describes how to configure an occam program for a network of transputers us-
ing the occam configurer tool occon£ and describes how to load the program
onto a transputer network. These procedures are illustrated with an example
program for four transputers.

The chapter introduces the configuration language, whose syntax is specified
in part2, appendix E and the configurer tool occon£, described in chapter 26.
This chapter also includes examples illustrating various aspects of configuration.

5.1 Introduction

In order to build programs for multitransputer networks a program is split into a
number of self contained components, and each of these is implemented as an
occam process. Each process may communicate with other processes resident
on the same transputer or, via links, with processes on other transputers.

Programs consisting of 0CCam processes can be run on single or multiple trans-
puters, in any combination. Performance requirements can be met by adapting
the application to run on differing numbers of transputers, and by using differing
network topologies. The mapping of processes to processors on a transputer
network is known as configuration.

Transputer programs can be configured to run on any physical network of trans-
puters. They can be configured to be loaded from an external host down a
transputer link, or to be loaded from ROM.

Configuration is achieved by including the program in a configuration description
written in the occam configuration language. A configuration description is
created by the user as a text file using the configuration language which is an
extension of occam. The file is expected by occon £ to have the file extension
-pgm. A configuration description may be processed by the configurer tool to
generate a configuration data file, which in turn may be processed by the collector
tool icollect to generate a transputer loadable file.

Conventional file name extensions may be used for these various file types to
facilitate the construction of Makefiles using the Makefile generator tool. Chapter
21 describes how to use the Makefile generator for program development and
the extensions which should be used.

72 TDS 275 02 March 1991

74 5 Configuring transputer networks

Within a configuration description the hardware network and the software de-
scription are kept separate. This enables the software description to be used for
running the same parallel program on a variety of alternative hardware networks.
Likewise a particular physical network may be described once for use in a vari-
ety of configurations describing different programs that may be run on the same
network.

By using the facilities for calling other languages from occam, programs com-
piled from mixed language sources may also be configured using the occam
configurer. (These facilities enable the foreign language code to be incorporated
into the 0ccam program as equivalent 0ccam processes. An example of this
is provided in the examples directory supplied with the toolset. A description
of this method of mixed language programming is given in ANSI C toolset user
manual). Similarly it is possible to configure 0ccam modules (which are called
by C programs) using the configurer provided with the ANSI C toolset. Details
of how to do this are also given in the ANSI C toolset user manual.

5.2 Configuration model
The configuration model consists of the following parts:

¢ A hardware network description which declares a network as a connected
graph of processors.

¢ A software description in the form of an occam process.

¢ A mapping between the processes and channels of the software and the
nodes (processors) and arcs (transputer link connections) of the network.
The mapping is achieved by declaring names and, in the scopes of these
declarations, referring to the names in the structures of the configuration
description. Normal occam scope rules apply.

The software description takes the form of an occam process with at least
as many parallel sub-processes as there are hardware processors in the net-
work. Within the description, each process which may be independently placed
on a processor, is introduced by a PROCESSOR construct naming a proces-
sor. Processors so named may either be the hardware processors declared in
the network description, or may be logical processors mapped onto the hard-
ware processors in a separate mapping structure. In either case the processor
name must have appeared in a NODE declaration in whose scope the software
description is written.

The connections between processes in the software description are defined by

occam channels. It is thus possible for the configurer tool to determine what
code is to be loaded onto what processor, and to choose its own mapping of

72 TDS 275 02 March 1991

5.2 Configuration model 75

channels onto physical connections between processors.

Some channels may be used to connect to hardware outside the network, such
as the development host or other hardware connected by means of link adaptors.
External objects of this kind are declared as EDGESs in the hardware description.

All processors which are connected together are connected via their links, rep-
resented in the language as attributes, of type EDGE of declared NODESs.

The connections to external edges, or those between processors may optionally
be declared as ARCs, which associate a name with a particular connection. This
enables explicit mappings of channels onto these arcs to be made.

5.2.1 Configuration language

A configuration description consists of a sequence of declarations and state-
ments in an extension to occam and follows the usual 0CCam scope rules.
These declarations and statements are evaluated by the occam compiler, which
is called during configuration by the configurer tool occon£. Appendix E (in part
2) defines the syntax of the occam configuration language and also gives de-
tails of how it differs from previous implementations of the toolset i.e. the IMS
D705/D605/D505 products.

Configuration declarations introduce physical processors, arcs and edges of the
network, network connections and processor attributes, logical processors to be
mapped onto physical processors, the software description, and the mapping
between logical and physical processors.

Arrays of NODEs, EDGEs, and ARCs may also be declared. A configuration de-
scription includes one NETWORK, one CONFIG and, optionally, one MAPPING.
Each of the items appearing before CONFIG behaves as an occam specifi-
cation, and ordinary VAL abbreviations may be included amongst these com-
ponents to facilitate the description of scalable configurations. A NETWORK,
CONFIG or MAPPING is optionally named by an identifier following its opening
keyword.

Configuration declarations are usually followed by statements which perform var-
ious actions relating to the declaration. Actions are defined by SET, CONNECT
and MAP statements. The DO construct enables these statements to be grouped
or replicated. PROCESSOR statements introduce processes which may be
mapped onto named processors.

The MAP statement may be replicated, via the DO construct, within a MAPPING

declaration. SET and CONNECT statements may be used within a NETWORK
declaration and may be combined in any order using the DO construct.

72 TDS 275 02 March 1991

76 5 Configuring transputer networks
Declaration | Description .
NODE Introduces processors (nodes of a graph). These processors

are considered to be physical if they are defined as part of the
hardware description, or logical if they are defined as part of
the software description and mapped to a physical processor
as part of the mapping.

ARC Introduces named connections (arcs of a graph) between pro-
cessors (using the transputer links). These connections need
not be declared as ARCs unless channels are required to be
explicitly placed on particular links.

EDGE Introduces external connections of the hardware description.
External edges may be the host, or any peripheral connected
via a link adaptor e.g. a joystick, disc drive.

NETWORK | Defines the connections and attribute settings of previously
declared NODEs (physical processors).

MAPPING Defines mappings between logical processors and physical
processors.

CONFIG Introduces the software description.

Table 5.1 Configuration description declarations

Statement Description

SET Defines values for NODE attributes.

CONNECT Defines a connection between two EDGES, either of two nodes
or between a node and a declared external EDGE.

MAP Defines the mapping of a logical processor onto a physical
processor declared as a NODE.

PROCESSOR | Introduces a software process and associates it with a logical
or physical processor.

DO Groups one or more actions defined by SET, CONNECT or
MAP statements.

Table 5.2 Configuration description statements

Code from other files may be referenced by means of the #USE directive, either
at the top level, or within the CONFIG construct. #INCLUDE directives can be
used to include other source files.

It is suggested that the distinct sections are kept in different files, accessed by
#INCLUDE directives from a ‘master’ file.

72 TDS 275 02

March 1991

5.2 Configuration model 77

5.2.2 Overall structure of a configuration description

A configuration description consists of two or three parts; a hardware network
description, a software network description, and an optional mapping between
the two.

The hardware description defines processor connections. It also defines at-
tributes such as processor types and memory sizes. These processors are
known as physical processors.

The software description is basically an occam parallel process, annotated with
PROCESSOR statements to indicate which processes are to be compiled for
which processors. These processes are allocated to logical processors.

The mapping section can be used to ease the task of changing a particular pro-
gram to execute on a different hardware network. The mapping section enables
this to be performed without modifying the software description in any way, by
flexibly mapping the logical processors onto the physical processors. As an
optimisation, for simple programs, or for programs which will never need to be
re-mapped, the software description may reference the physical processors di-
rectly, avoiding the need to introduce logical processor names.

The following example illustrates the basic style of the language:

-—- hardware description, omitting host connection

VAL K IS 1024 : -- useful constants for memory
VAL M IS K * K : -—- sizes
NODE root.p, worker.p : -- declare two processors
NETWORK simple.network
DO
SET root.p (type, memsize := "T414", 1 * M)
SET worker.p (type, memsize := "TB800", 4 * M)

CONNECT root.p[link][3] TO worker.p[link][0]

—-- mapping . ,
NODE root.l, worker.l : — (slae duwa physicsl procescon
MAPPING
DO
MAP root.l ONTO root.p
MAP worker.l ONTO worker.p

-- software description
#INCLUDE "prots.inc" -- declare protocol
#USE "root.lku" -- must be linked units

72 TDS 275 02 March 1991

78 5 Configuring transputer networks

#USE "worker.lku"

CONFIG
CHAN OF protocol root.to.worker, worker.to.root
PLACED PAR
PROCESSOR root.1l
root.process (worker.to.root, root.to.worker)

PROCESSOR worker.l
worker .process (root.to.worker, worker.to.root)

Note that the configurer can, in this example, automatically place the channels
onto the single connecting link, assuming that the two channels are used in
different directions. The configurer can make this check by means of the normal

occam usage checking rules.

This example is illustrated in figure 5.1.

root.p worker.p
T414 TBOO
3 WY 0
(1) IR T

worker.to.root

Maps onto

——————

Figure 5.1 Mapping of software onto hardware

In a simple configuration such as this one where each physical processor is
mapped onto a single logical processor, a shortened configuration description
may be used which omits the mapping section altogether and uses the physical
processor names directly in the software description.

To devise this shortened description remove the mapping section and delete
the suffixes .p and .1 from the NODE declarations, SET, CONNECT and

PROCESSOR statements.

72 TDS 275 02 March 1991

5.3 Hardware description 79

5.3 Hardware description
5.3.1 Declaring processors
Processors are declared to have NODE type, as if they were 0CCam data items:

NODE worker : -- single processor
[No.of.workers]NODE pipeline : -- array of processors

5.3.2 NODE attributes

A NODE has a set of attributes, analogous to fields of a record. An attribute is
referenced by subscripting the name of the node with the name of the attribute.
The attributes are:

[IBYTE type : -=- String describing processor type,
-- see list below

[JEDGE link : -- Link connections, number may
-- depend on type

INT memsize : -- Memory size in BYTEs

BOOL root g -- Defines root processor if there is

no HOST connection
INT romsize : —- Size of ROM attached to processor
order.code : -- Defines the priority of the program
) code in memory
order.vs : ~=- Defines the priority of the

program’s vectorspace in memory

The list of permissible attributes is in general dependent upon the NODE type
field, and may be extended for other NODE types in the future.

The attribute names, which are predeclared by the configurer, do not follow the
occam scope rules; they are only recognised in the correct context.

The use of order.code and order.vs is explained in section 5.5.3.

5.3.3 NETWORK description

The NETWORK keyword introduces a section which describes the connectivity,
and attributes of previously declared NODEs. These should be declared out-
side of the NETWORK description, so that they are visible inside and below the
NETWORK description.

To describe a single processor, the SET statement provides values for the pro-

72 TDS 275 02 March 1991

80 5 Configuring transputer networks

cessor’s attributes in the style of a multiple assignment.

NETWORK single
SET processor (type, memsize := "T800", 1024*1024)

.

The type attribute must be set to a BYTE array (of any length) whose contents
describe the processor type. Trailing spaces at the end of the processor’s type
are ignored.

Supported types are:

"T212l| "T222" nT225|l IIM212I'I
n"mAQQ" nm414n np4285"
n"pg8o0" nmgol" nmgQs"

The memsize attribute must be set to the amount of usable memory attached
to that processor, as a contiguous amount starting at the most negative address.
It is specified in BYTES.

Both the type and memsize attributes must be defined for all processors. No
attribute may be defined more than once for each processor.

The above example could also be written as a sequence of SET statements in
a DO construct:

NETWORK single
DO
SET processor (type
SET processor (memsize

TITBOOII)
1024*1024)

Since the DO construct does not imply any particular ordering, there is no con-
straint on the order in which attributes may be defined.

If a network is to be configured to be loaded from ROM, the attribute root must
be set to TRUE for one processor only. By default this attribute is FALSE for
all processors. The attribute romsize should be set to the number of bytes
of ROM on the root processor. These attributes are ignored if the network is
configured to be booted from link.

IF, SKIP and STOP may be used in DO constructs and are effectively executed
at configuration time.

Processors must be connected together by means of CONNECT statements quot-

72 TDS 275 02 March 1991

5.3 Hardware description 81

ing a pair of edges:

VAL K IS 1024:
NETWORK pair.from.ROM
DO
SET procl (type, memsize :
SET procl (root, romsize := TRUE, 256 * K)
SET proc2 (type, memsize := "T414", 1024 * K)
CONNECT procl[link] [0] TO proc2[link][3]

"T800", 2048 * K)

The order of the two edges in a CONNECT statement is irrelevant.

Arrays of processors do not need to all have the same types or attributes. They
can be set by using DO replicators within the NETWORK construct, and by using
conditionals, as in this (rather contrived) example:

NETWORK pipe

DO
DO i = 0 FOR 100
IF
(i1 \ 4) =0
SET processor[i] (type, memsize := "T800",
4 * (1024 * 1024))
TRUE

SET processor[i] (type, memsize := "T414",
2 * (1024 * 1024))

DO i = 0 FOR 99
DO
CONNECT processor[i] [1ink] [1] TO
processor[i+1l] [1link] [0]

IF
(i \2) =0
CONNECT processor[i] [1link][2] TO
processor[i+2] [1link] [3]
TRUE

SKIP

More complicated expressions may also be used, as long as they can be eval-
uated at configuration time:

72 TDS 275 02 March 1991

82 5 Configuring transputer networks

VAL processors IS ["T414", "T414", "T414", "T800"]

NETWORK fancy -- every fourth processor is different!
DO i = 0 FOR SIZE array
SET array[i] (type := processors[i \ 4])

5.3.4 Declaring EDGEs

Declared EDGEs define the ends of external connections of a NETWORK. For
instance, a connection to another machine whose internal structure is irrelevant.
They are declared as though they were 0ccam data types, and as usual we
can declare arrays of them:

[I0]EDGE diskdrive
NETWORK disk.farm
DO i = 0 FOR 10
DO
-—- insert code to set attributes, then:
CONNECT processor[i] [1ink] [0] TO diskdrive[i]

EDGE joystick
NODE controller :
NETWORK n
DO
SET controller (type, memsize := "T212", 64 * 1024)
CONNECT controller[link][2] TO joystick

5.3.5 Declaring ARCs

In some circumstances a programmer may require to name a connection be-
tween two processors. This isn't normally necessary, because the configurer
can place channels between processors onto links automatically, but where a
channel must be connected onto an external EDGE this is required. Also, if
there are multiple links between two processors, and one link is set for some
reason to go at a different data rate than another, the programmer might wish to
have more control.

These named links are called ARCs, and are declared as though they were

occam data types. They are associated with a link connection by adding a
WITH clause to the end of a CONNECT statement.

72 TDS 275 02 March 1991

5.3 Hardware description 83

EDGE joystick :

ARC link.to.joystick :

NODE controller :

NETWORK n

DO
SET controller (type, memsize := "T212", 64 * 1024)
CONNECT controller([link][2] TO joystick WITH
link.to.joystick

5.3.6 Abbreviations

occam style abbreviations are permitted, to enable easier reference to elements
of arrays, etc:

[10]NODE pipe
NETWORK pipeline
DO i = 0 FOR 10
NODE this IS pipe[il]
SET this (type, memsize := "T414", 1024%*1024)

Since NODEs have an attribute 1ink, whose type is [] EDGE, we can abbreviate
one link of a processor as an EDGE:

[10]NODE pipe
NETWORK pipeline
DO
DO i = 0 FOR 10
SET pipe[i] (type, memsize := "T414", 1024*1024)
DO i = 0 FOR 9
EDGE this IS pipe[i][1link][2] :
EDGE that IS pipe[i+l1][link][3] :
CONNECT this TO that

Simple one-to-one mappings of logical to physical processors may also be ex-
pressed as abbreviations:

NODE root.l IS root.p

72 TDS 275 02 March 1991

84 5 Configuring transputer networks

5.3.7 Host connection

There is a predefined EDGE named HOST, which indicates the connection to a
host computer:

NODE single
ARC hostlink :
NETWORK B004
DO
SET single (type, memsize := "TB800", 1000000)
CONNECT single[link] [0] TO HOST WITH hostlink

When configuring a program which is designed to be booted via a transputer
link, one processor must be connected to the predefined EDGE HOST.

5.3.8 Examples of network descriptions
1) Single processor configuration connected to host:

NODE MyB004:
ARC hostlink:
NETWORK B004
DO
SET MyB004 (type, memsize := "T414", 2 * M)
CONNECT MyB004[1link] [0] TO HOST WITH hostlink

This configuration is illustrated in figure 5.2.

MyB004

hostlink |, T4%4

(2M)

0O xI

Figure 5.2 Example of host connection

72 TDS 275 02 March 1991

5.3 Hardware description 85

2) Simple pipe with one processor with different memory size:

[PINODE Pipe:
ARC hostLink:
NETWORK simple.pipe
DO
CONNECT HOST TO Pipe[0] [1ink] [0] WITH hostLink
DO i = 0 FOR p-1
CONNECT Pipe[i] [1ink] [2] TO Pipe[i+1] [link][1]
SET Pipe[0] (type, memory := "TB00", 2*M)
DO i = 1 FOR p
SET Pipe[i] (type, memory := "T800", 1*M)

This network is illustrated in figure 5.3.

pipe[0] pipel[l] pipe[2] pipe [p-1]
H
T8OO T800 T80O T80O
g hostlink |, Py Py I
T (2m) (1M) (18) (1M)

Figure 5.3 Simple pipeline with different processor memory sizes
3) Square array with host interface processor:

VAL Up IS 0:

VAL Left IS 1:

VAL Down IS 2:

VAL Right IS 3:

NODE HostSquare:

[p] [PINODE Square:

ARC hostlink:

NETWORK square

DO
SET HostSquare (type, memsize := "T414", 2*M)
CONNECT HOST TO HostSquare[link] [0] WITH hostlink
CONNECT HostSquare[link][1] TO
Square[p-1] [p-1] [1ink] [Down]

SET Square[i][j] (type, memsize := "T800", 1*M)
IF

72 TDS 275 02 March 1991

86 5 Configuring transputer networks

(1 =0) AaND (j = 0)
CONNECT HostSquare [link] [Down] TO
Square[0] [0] [1ink] [Up]
i=0
CONNECT Square[p - 1][Jj - 1][link] [Down] TO
Square[0 103 1[1link] [Up]
TRUE
CONNECT Square[i - 1][j][link][Down] TO
Square[i 1[31[1link] [Up]

DO i =0 for p
DO j =0 for p
IF
j = (p-1)

CONNECT Square[i] [j] [link] [Right] TO
Square[(i + 1)\p][0][link] [Left]
TRUE
CONNECT Square[i] [j] [link] [Right] TO
Square[i] [§ + 1][link] [Left]

5.4 Software description

The software description is an OCCam process, PAR or PLACED PAR, with pro-
cesses annotated by PROCESSOR statements. These identify which processes
may be placed on particular processors. The keyword PLACED is retained for
compatibility with earlier products; it is no longer required and has no effect.

The NODEs which are referenced by a PROCESSOR statement may be either
physical processors if they are described as part of the hardware description, or
logical processors if they are described as part of the software description. If
the latter, they are mapped onto physical processors by means of a MAPPING
section.

Physical processor names are allowed here to simplify small networks, or those
which will not be re-mapped, so that the programmer does not need to invent
two names for each processor.

The Jogical processor names must be introduced first by means of NODE declara-
tions. These look identical to those used in the hardware description, but cannot
have attribute settings. Since these must be visible to a following MAPPING
section, they must be declared outside the CONFIG construct. Channels which
are to be placed on ARCs by mapping statements must also be declared outside
the CONFIG construct.

The process ‘inside’ the PROCESSOR statement may consist of 0ccam text.

72 TDS 275 02 March 1991

5.4 Software description 87

However, it is recommended that the code should be restricted to simple proce-
dure calls i.e. to separately compiled procedures, referenced as linked compi-
lation units using the #USE directive. Code which generates library calls is not
allowed.

A PROCESSOR statement associates the process instance (process) it labels
with the logical or physical processor it names. The same name may be ref-
erenced in more than one PROCESSOR statement. The set of processes so
named will run in parallel on that processor.

Note: when imakef is used to build the program, any linked units referenced
by the software description must be given extensions of the type exx. This is
because imakef uses a different convention for file extensions to the normal
TCOFF file extensions, see chapter 21.

5.4.1 Libraries of linked units

The facility to create libraries of linked units provides an easy method of targetting
a process at different processor types within a software description.

For example, suppose a process is compiled and linked once for a T2 and
once for a T8 and the linked units are given imakef file extensions in order
to distinguish them. Referencing the two linked units directly within the software
description by #USE directives, will cause one of them to hide the other from the
configurer.

If, however, the linked units are used to create a library and this is referenced
by a single #USE directive, the configurer will be able to extract the correct copy
of the process for each PROCESSOR statement it finds.

Only libraries containing linked units may be referenced from within a software
description.

5.4.2 Example

The following example of a software description, is for the pipeline sorter pro-
gram introduced in chapter 4. The example is developed to show the complete
configuration description for the program, in section 5.6. Figure 5.4 illustrates the
mapping of the software processes onto a network of logical processors, which
in this example is achieved without an actual mapping section. This method of
mapping is explained in section 5.5.4.

#INCLUDE "hostio.ine" -- declares SP
#INCLUDE "sorthdr.inc" -- declares LETTERS

72 TDS 275 02 March 1991

88 5 Configuring transputer networks

#USE "inout.lku" -- linked unit
#USE "element.lku" == linked unit
NODE inout.p : -- logical processor
[string.length]NODE pipe.element.p : -- logical

—-- processors
CONFIG

CHAN OF SP app.in:
CHAN OF SP app.out:
PLACE app.in, app.out ON hostlink:
[string.length+1]CHAN OF LETTERS pipe:
PAR
PROCESSOR inout.p
inout (app.in, app.out, pipe[string.length],
pipe[0])
PAR i = 0 FOR string.length
PROCESSOR pipe.element.p[i]
sort.element (pipe[i], pipe[i+l])

This example names a single processes inout.p and an array of processes
pipe.element.p. The code may be mapped onto any hardware configuration
onto which these logical processors may be mapped and which includes an ARC
declaration for the host connection hostlink.

pipe.
pipe. element .
element. plstring.
inout.p plo] length-1]
H pipe
[string.

O _ length-1]/ sort.
S element
T

pipe[string.length]

Figure 5.4 Pipeline sorter — mapping processes onto processors

5.5 Mapping descriptions

A MAPPING structure is used if the user has declared logical processors. The
MAPP ING maps logical processors used in the software description onto physical
processors used in the hardware description. It is possible to map any number
of logical processors onto any physical processor.

72 TDS 275 02 March 1991

5.5 Mapping descriptions 89

The priority at which a process runs may be determined as part of the mapping, if
that logical process does not explicitly include high priority code. This reflects the
fact that changes in mapping may not affect the overall structure of the software,
but can often change the decisions made about which processes should be
prioritised.

IF, SKIP and STOP may be used in a mapping structure.
As would be expected from the 0ccam scoping rules, logical processor names
must be declared as NODEs in the software description, before the opening
keyword MAPPING of the mapping description. Each name so declared must
appear once and once only on the left hand side of a mapping item. Physical
processors may appear on the right hand sides of multiple mapping items.
The mapping structure itself may appear either before or after the software de-
scription.
5.5.1 Mapping processes
Having declared physical processors, as part of the hardware description, and
logical processors, as part of the software description, we can assign logical
processors to physical processors using the MAP statement.
MAPPING map

MAP logical.proc ONTO physical.proc
We can also supply a list of logical processors to all be mapped onto the same

physical processor:

MAPPING map
MAP router.proc, application.proc ONTO root.processor
This is exactly equivalent to:
MAPPING map
DO
MAP router.proc ONTO root.processor
MAP application.proc ONTO root.processor

And we can use DO replicators, and IF constructs, etc:

MAPPING map

72 TDS 275 02 March 1991

90 5 Configuring transputer networks

DO
DO i = 0 FOR 10
MAP router.proc[i] ONTO router.processor[i]
DO i = 0 FOR 5
MAP sieve.proc[i] ONTO sieve.processor

If we require that the process’s priority be determined by the mapping, we can
use the optional PRI clause. The argument to PRI can be either 0 to indicate
high priority, or 1 to indicate /ow priority:

MAPPING map
DO i = 0 FOR 10
MAP logical.proc[i] ONTO physical.proc
PRI (INT (i = 0))

The configuration tool will reject the mapping at high priority of a process which
itself includes a PRI PAR.

5.5.2 Mapping channels

Channels between processors need not be placed by the user. The configurer
will determine that a connection exists, and will allocate all the channels to links
if they are available. However, if a user wants to override the default allocation,
channels may be mapped onto named ARCs. Also, channels connecting pro-
cessors to external EDGEs must be mapped onto an ARC which connects to that
EDGE.

Channels are mapped onto ARCs in exactly the same way as logical processors
are mapped onto physical processors. Two channels may be mapped onto the
same ARC, as long as they are used in different directions (the configurer will
check this). Obviously the ARC must connect EDGEs of the processors onto
which are mapped the processes which use the channel.

EDGE peripheral

ARC peripheral.arc :

NODE root.proc

NETWORK n

DO
-— insert code to set attributes, then:
CONNECT root.proc[link][0] TO peripheral WITH
peripheral.arc

CHAN OF protocol to.periph, from.periph :

72 TDS 275 02 March 1991

5.5 Mapping descriptions 91

NODE process
CONFIG
PLACED PAR
PROCESSOR process
—-- reads from channel from.periph, writes to
-- channel to.periph

MAPPING
DO
MAP process ONTO root.proc
MAP to.periph, from.periph ONTO peripheral.arc

5.5.3 Moving code and data areas

Two processor attributes may be used to provide greater control of the layout of
code and data areas in memory. Note that changing the default ordering means
that the INMOS debugger cannot be used with the program, and for this reason
these attributes must be explicitly enabled on the command line by means of the
‘RE' option.

Normally the configurer arranges for the program’s workspace to be given the
highest priority, and hence placed at the lowest address on chip. This means
that the workspace can make best use of the transputer’s on-chip RAM. Program
code is treated with next priority, and vectorspace has the lowest priority.

These priorities can be overridden by setting two processor attributes:
‘order.code’ and ‘order.vs’, which correspond to the program code, and
to the program’s vectorspace, respectively. These can be set to INT values,
where lower integers indicate a higher priority. The workspace is given priority 0.
Hence setting ‘order.code’ to -1 means that the code will be placed at a lower
address than the workspace. If an attribute is not set, the priority is considered
to have value 0. The relative ordering of sections whose priorities are equal is
undefined.

Since these attributes are essentially properties of the user's program, not of the

hardware description, the settings must be made as part of the MAPPING sec-
tion. However, the processor which is referenced must be a physical processor.

72 TDS 275 02 March 1991

92 5 Configuring transputer networks

Thus we may have a mapping section like so:

MAPPING prioritise.code
DO
SET physical.processor (order.code := -1)
MAP logical.processor ONTO physical.processor

If code re-ordering has not been explicitly enabled by the command line option
‘RE’, these attributes will be ignored.

5.5.4 Mapping without a MAPPING section

Without a mapping section a channel allocation may be used instead of a channel
mapping.

Any channel in scope at the point where a process is labelled is available for
explicit placement on an arc declared in the hardware network. This is done by
adding the following allocation immediately after the declaration of the channel:

CHAN OF protoceol to.periph, from.periph :
PLACE to.periph, from.periph ON peripheral.arc
CONF'IG
PLACED PAR
PROCESSOR root.proc
== as before

Allowing more than one channel to be placed in a single allocation or mapping
statement allows the two channels on any one physical transputer link to be
placed in a single line of code.

5.5.5 Mapping examples
1) pipeline sorter on a single processor
MAPPING
DO
MAP inout.p ONTO MyB004

DO i = 0 FOR string.length
MAP pipe.element.p[i] ONTO MyB004

72 TDS 275 02 March 1991

5.6 Example: A pipeline sorter on four transputers 93

2) pipeline sorter on a ring of processors, one per process

MAPPING
DO
MAP inout.p ONTO MyB004
DO i = 0 FOR string.length
MAP pipe.element.p[i] ONTO ringl[i]

5.6 Example: A pipeline sorter on four transputers

This section describes how the pipeline sorter program, described in section 4.12,
may be distributed over four T414 transputers. Each processor has many pro-
cesses allocated to it.

An example of how to design and write a configuration description is given,
followed by detailed instructions about how to compile, configure and run the
program.

In the configuration description it is assumed that there is a transputer network
of four T414 transputers connected as shown in figure 5.5. It does not matter if
you don't have such a network — you should read through this example and then
try modifying it for your network.

transputer 0 transputer 1

hostlink | . IMS IMS

HOST <=0 1443 2 3 T414
3 2

[

2 3

IMS IMS

Ta14 3 2 Ta14

transputer 3 transputer 2

Figure 5.5 Network of four transputers

The occam source and configuration description developed in this example is
supplied with the toolset in the "examples” directory, and you should copy these
files to a working directory in order to build the program. Alternatively you can

72 TDS 275 02 March 1991

94 5 Configuring transputer networks

type in the source of the program, as it is given below and in section 4.12.
The files are as follows:

sorthdr.inc the common protocol definition.
element.occ the sorting element.

inout.occ the interface to the host file server.
sortb3.pgm the configuration description for the network.

The contents of the files sorthdr.inc, element.occ and inout .occ are
described in section 4.12. The contents of the other files used in the program
are described below.

To complete the program the host file server library hostio.1lib, the hostio
include file hostio.ine, and the compiler library code will be used from the
toolset library directory.

The following code is in the file sortb3 . pgm, it describes the hardware network
shown above and a mapping of processes onto this network which puts an equal
number of processes on all processors after the first one, which also gets any
remainder:

-- problem size
VAL string.length IS 80:

-- hardware description
VAL number.of.transputers IS 4:
VAL number.of.elements IS string.length:
VAL elements.per.transputer IS number.of.elements/
number.of.transputers:
VAL remaining.elements IS number.of.elements\
number.of.transputers:
VAL elements.on.root IS elements.per.transputer +
remaining.elements:

VAL K IS 1024:
[4]NODE BOO03.t:
ARC hostlink:
NETWORK
DO
CONNECT B003.t[0] [link] [0] TO HOST WITH hostlink
DO i = 0 FOR 4
DO
SET B003.t[i] (type, memsize := "T41l4", 256%*K)
CONNECT B003.t[i][1link][2] TO

72 TDS 275 02 March 1991

5.6 Example: A pipeline sorter on four transputers 95

BOO03.t[(i+1)\4] [1ink] [3]

== mapping
VAL HIGH IS 0: =-- priorities
VAL LOW IS 1:
NODE inout.p:
[number.of.elements]NODE pipe.element.p:
MAPPING
DO
MAP inout.p,
pipe.element.p[elements.on.root-1] ONTO
B003.t[0] PRI HIGH
DO i = 0 FOR elements.on.root-1
MAP pipe.element.p[i] ONTO B003.t[0] PRI LOW
DC j = 0 FOR number.of.transputers - 1
VAL first.element.here IS elements.on.root +
(j*elements.per.transputer) :
VAL last.element.here IS first.element.here +
(elements.per.transputer-1):
DO
MAP pipe.element.p[first.element.here],
pipe.element.p[last.element.here] ONTO
B003.t[j+1] PRI HIGH
DO i = first.element.here + 1 FOR
elements.per.transputer - 2
MAP pipe.element.p[i] ONTO
B003.t[j+1] PRI LOW

#INCLUDE "hostio.inc"
#INCLUDE "sorthdr.inc"
#USE "inout.lku"
#USE "element.lku"
CONFIG
CHAN OF SP app.in:
CHAN OF SP app.out:
PLACE app.in, app.out ON hostlink:
[string.length+1]CHAN OF LETTERS pipe:
PAR
PROCESSOR inout.p
inout (app.in, app.out, pipel[string.length],
pipe[0])
PAR i = 0 FOR string.length
PROCESSOR pipe.element.p[i]
sort.element (pipe[i], pipe[i+l])

72 TDS 275 02 March 1991

96 5 Configuring transputer networks

In the mapping structure shown, the logical processors named in the software
description are mapped onto the physical processors declared in the hardware
description. Note: that on each processor, processes which communicate on
external channels are mapped to be run at high priority. The allocation of pro-
cesses to transputers is shown in figure 5.6.

transputer 0

transputer 3 ransputer 2
element --—@ element

Figure 5.6 Pipeline sorter processes

5.6.1 Building the program

The components of the program must be compiled in a bottom up fashion. First
compile the sorting element using the following command:

oc element

72 TDS 275 02 March 1991

5.6 Example: A pipeline sorter on four transputers 97

Because the file has a . oce file extension you can omit the extension from the
filename. The command line options to specify the target processor and error
mode may also be omitted because the defaults are required i.e. T414 and
HALT mode. The compiler will produce a file called element . tco.

Next compile the input/output process using the following command:
oc inout (creates the file inout.tco)

Each of these files must now be linked. The files are linked in separate oper-
ations, together with any files they reference. Each linking operation creates
a unit of code which may be loaded onto the transputer network, according to
configuration defined in the configuration description.

To link element . tco use one of the following commands:

ilink element.tco -f occama.lnk (UNIX)
ilink element.tco /f occama.lnk (MS-DOS/VMS)

Both of these commands will create a file called element.lku. The linker
indirect file occama.lnk contains the necessary references to the compiler
libraries. This file is supplied with the toolset.

To link inout. tco use one of the following commands:

ilink inout.tco hostio.lib -f occama.lnk (UNIX)
ilink inout.tco hostio.lib /f occama.lnk (MS-DOS/VMS)

Both of these commands will create a file called inout . 1ku.
Now configure the file sortb3.pgm which defines both the communication
channels between the processes and how they should be loaded onto the net-
work:

occonf sortb3.pgm

This command will create an cutput file called sortb3.cfb

To make the program runnable you must add bootstrap code. To do this use the
collector tool icollect:

icollect sortb3.cfb

The collector will create the file sortb3.btl

72 TDS 275 02 March 1991

98 5 Configuring transputer networks

5.6.2 Running the program

The program in the file sortb3.btl may be loaded and run using the skip
loader from the host via the root transputer which is assumed to be connected
by its link 2 to link O of the first transputer of the IMS B003 external network.
One of the following command sequences should be used:

UNIX based toolsets:

iskip 2 -e -r
iserver -se =-ss =-sc sortb3.btl

MS-DOS and VMS based toolsets:

iskip 2 /e /r
iserver /se /ss [/sc sortb3.btl

To run the program on the transputer network which includes the root transputer,
use one of the following commands:

iserver -se -sb sortb3.btl (UNIX)
iserver /se /sb sortb3.btl (MS-DOS/VMS)

The program will run until you type ‘RETURN' on its own. The ‘se’ option directs
the server to terminate if the program sets the error flag.
5.6.3 Automated program building
As with the single processor version of this program it is possible to automate
the building of this program with the Makefile generator tool and a suitable
MAKE program. The version of the configuration program supplied in the file
sortb3c.pgm is written using imakef£ file naming conventions. For example,
the linked units are given file extensions of the form cxx.
To produce a Makefile for the entire program type:

imakef sortb3c.btl
The Makefile generator will produce a file called sortb3c.mak containing a
MAKE description for the program. It will also produce linker indirect files for the

two compiled units which comprise the program; these will refer to any necessary
modules from the library.

To build the program run the MAKE program on the file sortb3c.mak and

72 TDS 275 02 March 1991

5.7 Use of conditionals in a configuration 99

all the necessary compiling, linking and configuration will be done automatically.
For more information about MAKE programs see chapter 21.

5.7 Use of conditionals in a configuration

Conditional constructs (IF) are permitted inside NETWORK, MAPPING and
CONFIG constructs. This makes it possible to create configuration descriptions
which can be ‘conditionally compiled’ for different network structures.

For example, while developing a program, it may be useful to modify a program
to bypass the root processor, so that an application may be placed directly onto
an application processor. The following, rather trivial, example demonstrates
this:

5.71 Example: Configuration using conditional IF

In this example, when a single processor is in use, the application communicates
directly with the host, as shown in figure 5.7. When two processors are available,
a buffer process is loaded onto the root processor. This process buffers the
communication between the application and the host. See figure 5.8.

application

rootlink T414

-0WOIT

Figure 5.7 Direct host connection

root application

T414 T414

3 rootlink 0

—nOIT
E;
©

Figure 5.8 Communication via the root processor

The implementation is split into the following files:

app . occ - the application
buff.occ — the buffer process

72 TDS 275 02 March 1991

100 5 Configuring transputer networks

myprog .pgm — the configuration description file
The content of app.oce is as follows:

#INCLUDE "hostio.inc"
#USE "hostio.lib"

PROC application.process (CHAN OF SP fs, ts)

SEQ
so.write.string.nl (fs, ts, "Hello world")
so.exit (fs, ts, sps.success)

The content of buff. occ is as follows:

#INCLUDE "hostio.inc"
#USE "hostio.lib"

PROC buffer.process (CHAN OF SP fs, ts, from.app, to.app)
CHAN OF BOOL stopper :
-- This never terminates
so.buffer(fs, ts, from.app, to.app, stopper)

The content of myprog.pgm is as follows:

VAL number.of.processors IS 1 : -- 1 when running,
-- 2 for developing
NODE root, application :
ARC hostlink, rootlink :
NETWORK
DO
IF
number.of.processors = 2
DO
SET root (type, memsize := "T414", #100000)
CONNECT root[link] [0] TO HOST WITH hostlink
CONNECT root[link] [3] TO application[link] [0]
WITH rootlink
TRUE
CONNECT application[link] [0] TO HOST WITH rootlink
SET application(type, memsize := "T414", #100000)

#INCLUDE "hostio.ine"
#USE "app.cah"
#USE "buff.cah"
CONFIG

CHAN OF SP fs, ts :

72 TDS 275 02 March 1991

5.8 Summary of configuration steps 101

PLACE fs, ts ON rootlink : -- Note that this is ‘rootlink’
-- not ‘hostlink’
PAR
IF

number.of.processors = 2
CHAN OF SP fs0, ts0 :
PLACE £s0, ts0 ON hostlink :
PROCESSOR root
buffer.process (£s0, ts0, ts, fs)
TRUE
SKIP
PROCESSOR application
application.process(fs, ts)

NODEs which are declared, but do not have any attributes set, are ignored when
configuring a program.

5.8 Summary of configuration steps

To summarise, the steps involved in building a program that runs on a network
of transputers are as follows:

1 Decide how your program will be distributed over the transputers in your
network.

2 Write a configuration description for your program by:
(a) Describing your hardware network.

(b) Inserting PROCESSOR statements into your program and adding
any necessary mapping description.

3 Compile all the separate compilation procedures that form the code for
each transputer in a bottom up fashion.

4 Link each configuration procedure with its component parts into a file with
the name used in #USE directives in the configuration source file.

5 Run the configurer on the configuration description file.
6 Collect the code using icollect.
7 Load the program into the network using the host file server.

Steps 3 to 6 can be automated by using imakef and a suitable MAKE program.

72 TDS 275 02 March 1991

102 5 Configuring transputer networks

72 TDS 275 02 March 1991

6 Loading transputer
programs

This chapter explains how to load programs onto single transputers and trans-
puter networks. It briefly describes the format of loadable programs and intro-
duces the program loading tools iserver and iskip. The chapter goes on to
explain how to load programs for debugging and ends with an example of skip
loading.

6.1 Introduction

Transputer programs are loaded onto transputer boards with the iserver tool
which installs code on each processor using processor and distribution informa-
tion embedded in the executable file. The executable file consists of code to
which bootstrap information has been added to make the program self-booting
on the transputer. Self-booting executable code is also known as bootable
code.

Bootable files are generated by icollect from configuration data files (network
programs) or linked units (single transputer programs). Bootable files are gen-
erated with the default extension .bt1 (for loading onto boot from link boards),
or .btr (for loading onto boot from ROM boards). Note a bootable file is con-
structed such that copying it to a link will boot the network automatically.

6.2 Tools for loading

Two tools are provided to load programs onto transputers and transputer net-
works:

e iserver — the file server and loader tool.
iserver loads the bootable file onto the single transputer or transputer

network and activates the host file server that provides communication
with the host.

iskip - the skip loading tool.

iskip allows a program to be loaded over the root transputer onto an
external network. The tool is used prior to invoking iserver to start up
a special route-through process on the root transputer that transfers data
between the the network and the host system.

72 TDS 275 02 March 1991

104 6 Loading transputer programs

Skip loading is useful for the post-mortem debugging of programs that use
the root transputer. The root transputer in the network is omitted from
the logical network and the program is loaded cnto the first processor
after the root transputer, leaving it free to run the debugger. This avoids
having to debug the code from a memory dump file.

Programs loaded using iskip always require one extra processor on the
network in addition to those required to run the program. For example, a
program written for a single transputer requires at least two processors,
one to act as the root transputer and one to run the program.

6.3 The boot from link loading mechanism

iserver loads programs onto transputer networks, via the host link connection,
using the communication protocol SP.

The bootstrap code for the transputers in the network is sent first. The code is
propagated throughout the network as individual processors load neighbouring
processors. After all the transputers in the network have been booted, program
code is allocated to individual processors. For a multitransputer network the
allocation of processes to processors is determined by the configuration file.
For single transputer programs code is loaded onto the first processor on the
network.

If iskip is used the first transputer in the network is bypassed. Therefore the
network must contain one additional transputer to the number required to run the
program.

When the code is copied into the transputer's memory the process boots auto-
matically and the program continues to run until an error occurs, the server is
terminated by pressing the ISERVER interrupt key (usually CTRL-C or CTRL-
BREAK), or the program terminates naturally. (Note: terminating the server will
only stop the program if the program attempts to communicate with the server).

6.3.1 Breakpoint debugging

Programs are loaded for breakpoint debugging using the idebug command.
When invoked in breakpoint mode this command incorporates a skip load and
iserver is not required. Because it uses a skip load, breakpoint debugging
requires at least two processors on the network.

For more information about breakpoint debugging and details of the command
syntax see section 14.3.6.

72 TDS 275 02 March 1991

6.4 Boards and subnetworks 105

6.4 Boards and subnetworks

There are two basic types of transputer evaluation board: those that boot from
link and those that boot from ROM.

Boot from link TRAM boards form the majority of transputer boards in general
use. They are loaded down the link that connects the root transputer to the host
using the iserver tool. Programs intended to run on boot from link boards
must consist of bootable code, such as that generated by icollect.

Examples of boot from link boards supplied by INMOS are the IMS B008 PC
motherboard (with appropriate TRAMSs) and the IMS B014 and IMS B016 VME-
bus standard interface boards.

Boot from ROM TRAM boards are intended for standalone applications such as
embedded systems.

Examples of boot from ROM products are the INMOS iq systems IMS B418
Flash ROM TRAM and the IMS B016 VME board operating in boot-from-ROM
mode.

6.41 Subsystem wiring

Subsystem wiring is the way in which boards are connected together, and de-
termines the manner in which transputer subnetworks are controlled.

Three signals are used to control transputers mounted in a system, namely Re-
set, Analyse, and Error. Together these are known as the System Services. All
INMOS transputer boards use a common scheme for propagating these signals
to other subnetworks. The scheme is as follows.

Each transputer board has three ports for communicating system services from
one board to another. These are Up, Down, and Subsystem. Up is the input
port, used to control the board from an external source; Down and Subsystem
are both output ports and are used to propagate the Up signal to other boards
or subnetworks.

The Down and Subsystem ports work in the following ways:

Down propagates the Up signal unchanged to the next board or subnetwork.
This allows multiple boards to be chained together by connecting successive Up
and Down ports and the whole network can be controlled by a single signal.

Subsystem transfers control to the board, allowing subnetworks downstream of
the board to be independently reset, analysed, and their error flags read, under

72 TDS 275 02 March 1991

106 6 Loading transputer programs

the control of the transputer to which the subsystem is attached.

6.4.2 Connecting subnetworks

Multiple transputer systems can either be controlled by the host computer or by
a master transputer controlled by the host computer.

In a typical multitransputer system the root transputer's Up port is connected
to the host computer so that the host can control the loading of programs and
monitor errors on the network. The first processor in the subnetwork is connected
to either Down or Subsystem depending on the application, and other processors
on the network are chained together via their Up and Down ports.

In a simple application requiring multiple transputers, the subnetwork would nor-
mally be connected to Down on the root transputer. This would allow the host
computer to reset the whole network in a single operation and to monitor the
error signal on any transputer in the network.

A more complicated application may require several programs to be loaded onto
the subnetwork under the control of the root transputer. Here the subnetwork
would be connected to Subsystem so that the root transputer could repeatedly
reset and re-load the subnetwork. Any errors in the subnetwork would be de-
tected by the root transputer through its Subsystem port, and the error would not
be propagated through the Up port to the host computer. Reset and Analyse
signals are propagated through to the Subsystem port, but the error signal is
not relayed back. (Note some boards do not conform to this system of signal
propagation — see section 6.5.1).

6.5 Loading programs for debugging

Special debugger and server options must be used for the debugging of pro-
grams running on transputer boards. The options vary with the subsystem wiring,
the board type, and whether or not the program uses the root transputer. The
effects of subsystem wiring are described above; the effects of board type and
program mode are described in the following sections.

Commands to use for various combinations of subsystem wiring, board type, and
program mode, are listed in Table 14.3.

6.5.1 Board types

Some early INMOS boards of the B004 type, unlike later TRAM-based boards,
do not propagate Reset through to the Subsystem port. On these boards the ‘A’

72 TDS 275 02 March 1991

6.5 Loading programs for debugging 107

debugger option must be supplied on the debugger command line to reset the
network.

6.5.2 Use of the root transputer

The use made of the root transputer by the program changes the procedures
you must use in post-mortem debugging. This is because the debugger program
executes on the root transputer and any application code becomes overwritten
when the tool is invoked.

Two procedures can be used to load and debug code running on the root trans-
puter:

1 Programs can be loaded in the normal way using iserver, and the
program image in the root transputers memory saved to a file. The
code running on the root transputer is then debugged from the dump file.
Code running on the rest of the network is debugged in the normal way
by reading the transputer memory directly down the transputer links.

The dump file is created by invoking idump. The debugger is subse-
quently invoked using the debugger ‘R’ option that directs it to read the
dump file.

Note: On boards that contain only one transputer this method must be
used.

2 Programs can be loaded over the top of the root transputer by invoking
the iskip tool before iserver. This leaves the root transputer free
to run the debugger. The program can then be debugged down the root
transputer link in the normal way.

If iskip is used an extra processor is required over and above those
required to run the application program.

Programs configured for a subnetwork that does not include the root transputer
can be loaded with iskip and iserver and debugged down the root trans-
puter link using the debugger ‘T’ opticn.

Details of the procedures to use for loading and debugging all types of transputer
programs can be found in section 14.2.

6.5.3 Analyse and Reset

Care must be taken that Analyse or Reset are only asserted once on a network
that is to be debugged, or incorrect data will be obtained. To ensure this the

72 TDS 275 02 March 1991

108 6 Loading transputer programs

debugger should be invoked using the standard command sequences given in
Table 14.3.

6.6 Example skip load

This section shows how to load a program into a network over the root transputer
using the iskip tool.

6.6.1 Target network

The program to be loaded is configured for a target network consisting of two
T800 processors mounted on a B008 motherboard. A T414 processor in slot
zero acts as the root transputer, and the target network is connected to link 2 on
the root transputer via one of the links on processor 1. The two T800 processors
are connected by a single link.

The target network and its connections are shown schematically below.

target network
host computer root transputer ¥ ¥

hpst host | link skip link 2 processor| |processor
file process 1)
server

6.6.2 Loading the program

The file twinprog.btl contains the bootable program.

To prepare the board for running the program on the target network, invoke
iskip using one of the following commands:

iskip 2 -r -e (UNIX)
iskip 2 /r /e (MS-DOS and VMS)

This sets up the system to direct the program to the target network over the top
of the root transputer and starts the route-through process on the root transputer.
Options ‘x" and ‘e’ respectively reset the target network and direct the host file
server to monitor the halt-on-error flag.

72 TDS 275 02 March 1991

6.6 Example skip load 109

The program can then be loaded using one of the following commands:
iserver -ss -se -sc twinprog.btl (UNIX)
iserver /ss /se /sc twinprog.btl (MS-DOS and VMS)

6.6.3 Clearing the network

On transputer boards error flags can be cleared using a network check program
such as ispy. (Error flags can become set when the board is powered up).

The ispy program is provided as part of the board support software for INMOS
iq systems products. These products are available separately through your local
INMOS distributor.

An alternative to using a network check program is to load a dummy process

onto each processor. In the act of loading the process code the error flag is
cleared. This method is described in section 14.3.6.

72 TDS 275 02 March 1991

110 6 Loading transputer programs

72 TDS 275 02 March 1991

7 Debugging OCCam
programs

This chapter describes how to debug occam transputer programs. It describes
the facilities of the toolset debugger idebug and shows how they can be used
to debug transputer programs in a systematic manner. It explains how the de-
bugger can be used in two modes (post-mortem and interactive) to analyse
transputer programs and describes the two debugging environments (symbolic
and Monitor page). The chapter ends with a tutorial example to illustrate break-
point debugging, some hints about debugging 0ccam code, and a list of points
to note when using the debugger.

Chapter 14 provides detailed information about idebug, including command
line syntax, symbolic debugging functions and monitor page commands.

7.1 Introduction

The network debugger idebug is a comprehensive debugging tool for transputer
programs. It can be run in post-mortem mode to determine the cause of failure
in a halted program, or in interactive mode to execute a program stepwise by
setting breakpoints in the code. In either mode programs can be debugged from
source code using the symbolic functions or from the machine code using the
Monitor page commands.

Post-mortem debugging allows programs to be examined for the cause of failure
after the transputer halts on error. The debugger locates the errant process
in the program either by direct examination of the program image in transputer
memory or by reading memory dump files. Processes running in parallel with
the errant process can be examined anywhere on the network.

Breakpoint debugging allows programs to be executed in a stepwise manner
under interactive control. Breakpoints can be set within the code to cause the
program to pause for the inspection of variables, channels, and processes; vari-
ables can be modified and the program continued with the new values.

The debugger can also be invoked on a dummy network to examine the static
features of a program. The dummy network simulates the contents of memory
locations and registers, and can also be used to explore the features of the
debugger without running a real program.

72 TDS 275 02 March 1991

112 Debugging occam programs

7.1.1 Debugging with isim

The transputer simulator tool 1sim can also be used to debug transputer pro-
grams from a low level environment. Using a similar environment to the de-
bugger Monitor page transputer memory can be examined, breakpoints set, and
programs executed by single stepping.

The debugging facilities of the simulator are briefly described in this chapter
(section 7.12). Details of how to use the simulator tool can be found in chapter 23.

7.2 Programs that can be debugged

The debugger can analyse programs running on transputers that are either di-
rectly attached to a host through a server program, or connected to the host via
a root transputer. The debugger runs on the root transputer and networks to
be debugged must incorporate a 32-bit transputer with at least 1 Megabyte of
memory at the root (2 Megabytes or more is preferable). If breakpoint debugging
is used the transputer network must contain at least two processors, because
the root transputer is dedicated to running the breakpoint debugger in parallel
with the user's program.

7.3 Runtime errors

A running 0CCam program may halt for a number of reasons. Among the most
common causes of error are:

e A STOP process, or a process which behaves like STOP (such as an IF
with no TRUE guards) has been executed.

e An array index is out of range.
e An arithmetic error, such as overflow or divide-by-zero has occurred.

e An array element is being aliased at runtime, that is, being referred to by
more than one name within a given scope.

When a runtime error occurs, the debugger can be used to pinpoint the line of
occam causing the error, and to investigate the state of that process and other
processes in the system. It can also be used to investigate the state of the
processor or network when the program stopped.

Note: The debugger may not find all current processes; for example, it cannot
automatically find processes which have deadlocked waiting for communication
on internal channels. Deadlocks are discussed in more detail in section 7.17.

72 TDS 275 02 March 1991

7.3 Runtime errors 113

Possible causes of runtime errors are:

STOP In occam the STOP process behaves as though an error has occurred.
The following 0CcCam statements behave like STOP:

¢ IF statements where no guard evaluates TRUE.

e CASE statements where no case evaluates TRUE and there is no
ELSE statement.

e ALT statements where no guard evaluates TRUE.

Arithmetic errors Arithmetic errors such as overflow and divide by zero cause
an error.

Floating-point calculations cause an error if any input is infinity or ‘Not-a-
Number', or if a result would be infinity or ‘Not-a-Number'. This can be
avoided by explicit use of the IEEE library routines. See the ‘occam 2
Reference Manual’ for details.

Shifts Shifting an integer by more than the number of bits in its representation
or by a negative value causes an error.

Type conversions Type conversions where the value is not in the range ac-
cepted by the new type cause an error. For example, a value converted
to type BYTE must lie in the range 0-255.

Replicators Negative replicators in replicated constructs (SEQ, PAR, IF, or
ALT) cause an error. (Zero replicators are permitted.)

Array accesses Any access to elements outside the range of an array cause
an error. This also applies to segments of arrays.

If a segment of an array is assigned to another segment of the same
array, the two segments must not overlap.

The sizes of an array must correspond when an array is passed as a
parameter to a procedure or function, or when an array is assigned or
abbreviated. Zero length segments are allowed.

Abbreviations Abbreviating the same element of an array twice in the same
scope generates an error. The compiler ‘alias checking’ option ‘A’ dis-
ables this form of error checking.

Communications Attempting to communicate a zero length array on a channel

of type CHAN OF ANY causes an error. Zero length counted arrays are
permitted.

72 TDS 275 02 March 1991

114 Debugging occam programs

A CASE input process where the communicated tag does not match any
of those supplied, causes an error.

Retyping Any RETYPES expression must be aligned to the correct word or byte
boundary. For example, bytes with indexes 5, 6, 7 and 8 of a declared
BYTE array cannot be retyped as INT32, since INT32s must be aligned
on a word boundary.

7.4 Compiling programs for debugging

Programs to be debugged must be compiled with full debugging data enabled,
this is a default of the occam compiler.

7.41 Symbolic debug information

The occam compiler generates object files containing full debugging informa-
tion, by default. Two command line options may be used to limit the debugging
information produced by the compiler.

The ‘Y’ option disables interactive debugging using breakpoints, while the D’
option makes the compiler produce minimal debug information only. Minimal
debug information enables the debugger to backtrace out of a procedure or
function to a module compiled with full debug information. It is intended for
modules that are placed in libraries (e.g. the libraries supplied with this toolset
are compiled with this option).

The ‘D’ option only affects the debug information produced and does not alter
the code generated. Code generated using the ‘D’ option is identical to that
generated with full debug information.

The ‘¥’ option produces object code which is optimal for channel communications
on a transputer. It disables channel communications via library routines (see
sections 25.7 and 7.6.1). As a result, the object code produced for channel
communications will often be different.

7.4.2 Error modes

Programs to be debugged should be compiled and linked in HALT mode i.e the
toolset default. The behaviour of a program when an error occurs depends on
the mode in which the program was compiled and linked, as follows:

o In HALT mode any error during program execution halts the transputer
immediately.

72 TDS 275 02 March 1991

7.5 Post-mortem debugging 115

e In STOP mode, errors do not halt the program, rather they stop the
process allowing other processes executing on the same transputer to
continue. Programs compiled in this mode can only be debugged if they
are halted explicitly.

e Programs compiled in UNIVERSAL mode will adopt the error mode se-
lected at link time i.e. HALT or STOP mode. If UNIVERSAL mode is
selected at both compile and link time, then the error behaviour will de-
fault to HALT mode.

7.5 Post-mortem debugging

Post-mortem debugging is the analysis of stopped programs, that is, programs
that have failed to run correctly and set the transputer error flag. Programs that
are to be debugged in this mode should be compiled in HALT mode so that the
processor halts when the flag is set, and they should be loaded by iserver,
using the ‘'SE’ option, so that the error flag is monitored.

Post-mortem debugging can also be used fo debug programs that have been
explicitly interrupted with the host system BREAK key. To interrupt a program,
for example when a program ‘hangs’, press the BREAK key, which stops the
server but not the program, and then invoke idump to take a snapshot of the
running program. Invoking idump stops the program by sending an Analyse
signal to the transputer in order to take a snapshot of its current activity.

7.5.1 Program loading

Programs which run on the root transputer, or which use the root transputer to
run part of a multiprocessor program, must be debugged from an memory image
of the transputer. This is necessary because the debugger executes on the root
transputer and overwrites the code in the transputer's memory.

The memory dump is performed using the idump tool after the program has
failed and before the debugger is invoked with the-'R’ option. Details of how to
invoke the idump tool can be found in chapter 15.

Alternatively the program can be skip loaded onto the next processor on the
network, avoiding the root transputer. This requires one extra processor on the
network over and above the number needed to run the program. Skip loading is
described in chapter 24.

If only one transputer is available, for example on single-transputer boards, the

memory dump method must be used. If more than one transputer is available
skip loading is the recommended method since it is a quicker operation.

72 TDS 275 02 March 1991

116 Debugging occam programs

Without debugging With debugging
kernel 0 kerne

_3 User \ 11]

process /2

2 Transputer

Transputer

Figure 7.1 Debugger runtime kernel
7.6 Breakpoint debugging

Breakpoint debugging allows programs to executed under interactive control us-
ing breakpoints set in the code. Breakpoints can be set on any line of source.
Symbolic and Monitor page facilities can be used to examine code, inspect vari-
ables, jump down channels to other processes or processors, and determine
the state of the network. Special symbolic functions and Monitor page com-
mands, only available in breakpoint mode, support the modification of variables
and memory locations and the restarting of programs from the breakpoint or from
other points in the code.

Programs that communicate to the host must use iserver SP protocol, as
used by INMOS libraries.

7.6.1 Runtime kernel

The breakpoint debugger places a special runtime kernel on each processor in
addition to the application bootable code. This kernel provides a communication
network to enable the debugger to transparently share transputer links with the
application in addition to providing a breakpoint handler to deal with breakpoints,
errors, inspection of processor state etc. The scheme is illustrated in Figure 7.1.

Note: The debugging kernel places the transputer into Halt-On-Error mode re-
gardless of the error mode of the program. This means that during breakpoint
debugging a transputer will always HALT when an error occurs.

The runtime kernel requires a certain amount of memory on each processor, the
exact amount differing slightly between processor types. Kernels on processors
with hardware support require slightly more memory because they retain more
state information. The size of the kernel on each transputer type is given in
Table 7.1.

Apart from the extra memory required, the kernel is transparent to the application

72 TDS 275 02 March 1991

7.6 Breakpoint debugging 117

Processor | Kernel size | H/W support
M212 10K No
T212 10K No
T222 10K No
T225 12K Yes
T414 12K No
T800 12K No
T400 14K Yes
T425 14K Yes
T801 14K Yes
T805 14K Yes

Table 7.1 Runtime kernel size and processor breakpoint support

program if processes on different processors communicate with each other in the
normal way using channels supplied by the configurer (maximum of four input
and four output per processor).

Note: To allow breakpoint debugging to function correctly a program must not
place channels explicitly onto processor link addresses. Programs that do so
may introduce conflict with the runtime kernel, which also uses the external links.
Programs currently coded in this way should be recoded to pass in external
channels from the configurer, otherwise breakpoint debugging may not be used.

7.6.2 Hardware breakpoint support

Certain transputers have built-in instructions for breakpointing (see Table 7.1).
For those processors without hardware breakpoint support, breakpoints should
not be set within high priority processes because the mechanism used to im-
plement breakpoints causes high priority processes to lock the processor and
disable all communications to the processor via the runtime kernel.

The effect on the network of encountering such a breakpoint will depend on
the position of the processor in the network hierarchy but in any event should be
avoided. The debugger is unable to check the validity of breakpoints and it is the
programmer's responsibility to ensure correct operation on processors without
direct hardware breakpoint support.

7.6.3 Compiling the program

Programs to be debugged using breakpointing must not be compiled or linked
using the 'Y’ option. The compiler default is to create code with full debug data,

72 TDS 275 02 March 1991

118 Debugging occam programs

including interactive support.

All modules in a program must be compiled in the same or a compatible error
mode. Error modes are checked at link time and incompatible modes prevent
the link completing successfully.

7.6.4 Configuring the program

Programs to be debugged using breakpoint debugging must not be configured
using the 'Y’ option.

7.6.5 Loading the program

Breakpoint debugging does not require special loading or memory dump proce-
dures because the program is automatically skip loaded by idebug. However,
breakpoint debugging does require one extra processor on the network because
the roct processor is dedicated to running the breakpoint debugger.

7.6.6 Clearing error flags

If either iserver or idebug detect that the error flag is set immediately a
program starts executing it is likely that the network consists of more processors
than you are currently using and that one or more of the unused processors
has its error flag set. (Error flags can become set when transputer boards are
powered up).

On transputer boards error flags can be cleared by running a network check
program such as ispy. This ensures a clean network on which to load the
program.

The ispy program is provided as part of the board support software for INMOS
iq systems products. These products are available separately through your local
INMOS distributor.

An alternative to using a network check program to clear the network is to load

a dummy process onto each processor. In the act of loading the process code
the error flag is cleared. This method is described in section 14.3.6.

7.6.7 Breakpoint functions and commands

Several symbolic debugging functions and Monitor page commands are only
available in breakpoint mode. The commands available are summarised below.

72 TDS 275 02 March 1991

7.7 Program termination 119

Symbolic functions Monitor page commands
Set/clear breakpoint. Breakpoint menu.
Execute from breakpoint. Execute program.
Execute from current line. Show debug messages.
Modify variable. Update register display.

Write to memory.

7.6.8 Breakpoints

Breakpoints can be set, cleared, and listed using Monitor page commands, and
set/cleared using symbolic functions.

Breakpoints can be set at any point in a process running on any processor. At
each breakpoint (or on program error, see section 7.11) the process pauses and
the source code may be displayed.

Note: When a process is paused at a breakpoint or program error other parallel
processes in the program continue to run.

Note: A side effect of pausing at a breakpoint or error is that the debugger
suspends iserver communications in order to preserve debugger output to
the screen.

Breakpoints can be set at code entry points, or on any line of source code. Vari-
ables within scope at the breakpoint can be modified and the process restarted.
Breakpoints can also be set at the Monitor page but care should be taken not
to set breakpoints at addresses that do not correspond to the start of a source
code statement, otherwise the behaviour is undefined.

Setting breakpoints at symbolic level is the recommended method.

7.7 Program termination

Program termination is signalled to the debugger by the termination of iserver
(explicitly in the user code). If the program contains independently executing
processes which do not require communication with the server the debugger
may be resumed to interact with these processes.

To run or debug the program again it must be reloaded onto the transputer using
iserver, or idebug in breakpoint mode.

72 TDS 275 02 March 1991

120 Debugging occam programs

7.8 Symbolic facilities

Symbolic debugging is debugging at source code level using the symbols de-
fined in the program for variables, constants and channels. Features provided
in symbolic debugging include the examination of source code, the inspection
of variables and channels, and the backtracing of procedure calls. A number of
special breakpoint functions are available if the debugger is invoked in breakpoint
mode.

Source level debugging is accessed through symbolic functions mapped to spe-
cific keyboard function keys (e.g. [[NSPECT)). Keyboard layouts for specific ter-
minal types can be found in the Delivery Manual that accompanies this release.

The main symbolic debugging activities and the functions that are used to access
them are described in the following sections.

7.8.1 Locating to source code

Locating to the source cocde for a particular process is a crucial procedure in
the debugging process on which other operations depend. For each required
location the debugger must be given a memory address which it uses to locate to
the source. When the required code is located, symbolic functions can be used
to browse the code and inspect variables. Where the source code is unavailable,
for example, libraries supplied as object code with minimal debug information,
the line containing the library call is located to instead.

When first invoked in post-mortem mode the debugger determines the address of
the last instruction executed, which it uses to automatically locate to the relevant
source code. Subsequently for each new point to locate to in the code the
debugger requires a new address which can be supplied by the programmer.

Addresses of important segments of code can be determined using the Moni-
tor page commands that display lists of processes waiting on the run queues,
the timer queue, and on the transputer links. Any address in memory can be
specified using the Monitor page ‘O’ command.

Certain addresses are already known to the debugger and can be located to
using symbolic functions without specifying the address or switching to Monitor
page commands. Many of the common operations used during source code
debugging can be performed directly with symbolic functions. They include re-
locating to the previous location and locating to the original error.

The symbolic functions that can be used directly for locating to known areas of
code are listed below.

72 TDS 275 02 March 1991

7.8 Symbolic facilities 121

TOP] Locate back to the error, or last source code location.
RELOCATE Locate back to the last location line.

A strategy for debugging multiprocess programs by locating each process in turn
is described later in this chapter in section 7.10.

7.8.2 Browsing source code

Several functions are available for browsing source files once they have been
located. They include functions for navigating files, changing to included or new
files, and string searching. The functions are listed below.

Go to the first line.

Go to the last line.

Go to a specified line.

Search for a specified string.

Enter an included file (one incorporated by #INCLUDE).
Exit to the enclosing file.

CHANGE FILE] Display a different file.

7.8.3 Inspecting variables

The values of constants, variables, parameters, arrays, and channels can be
inspected at any point in the code. A special inspect function for channels only
allows the debugger to locate to the process waiting at the end of the channel.
Symbols to be inspected must be in scope with the source line last located to.
If the debugger is used in breakpoint mode variables may also be modified.

The two inspect functions are listed below.

INSPECT] Display the value and type of a source code symbol.
CHANNEL Locate to the process waiting on a channel.

Jumping down channels

The function can be used to locate to a process waiting on a channel.
This is known as ‘jumping down’ a channel and works for channels on the same
processor (internal or soft channels) or channels assigned in the configuration to
transputer links (external or hard channels which connect processes on different

72 TDS 275 02 March 1991

122 Debugging 0ccam programs

processors together). Debugging can then continue at the waiting process. If
no process is waiting on a channel the channel is given as 'Empty’.

7.8.4 Tracing procedure calls

Two functions assist in the tracing of procedure or function calls. They can be
used even if the source is not present, for example, libraries supplied as object
code with minimal debug information, but in this case the line containing the
function call is displayed rather than the library code itself. Where procedures are
nested successive backtrace operations will locate to the original call. Variables
and other symbols can be inspected at any stage. The two functions are listed
below.

BACKTRACE] Locate to the procedure or function call.
RETRACE Reverse the last [BACKTRACE].

7.8.5 Modifying variables

The function allows variables to be changed in transputer memory and
the program continued with the new values.

7.8.6 Breakpointing

Symbolic functions are provided for setting and clearing breakpoints, for modify-
ing the value of a variable, and for continuing the program.

Set or clear a breakpoint on the current line.
FY] Change the value of a variable in memory.

Resume the program from the breakpoint.

Resume the program from the current line.

A6
1]
cl 2
=
m

7.9 Monitor page

The debugger Monitor page is a low level debugging environment which gives
direct access to machine level data. It allows memory to be viewed and disas-
sembled and gives access to information about the processor's activity through
the display of error flag status and pointers to process queues. Specific debug-
ging operations are invoked by mainly single letter commands typed after the
Option prompt.

72 TDS 275 02 March 1991

7.9 Monitor page 123

7.9.1 Startup display

When first invoked in breakpoint mode, or in post-mortem mode with an invalid
Iptr or Wdesc (see below), the debugger enters the Monitor page environment
and displays information such as the addresses of instruction and workspace
pointers, status of error flags, and information about the processor run queues.
The memory map is also displayed.

If an Iptr or Wdesc is invalid at startup it is marked as invalid. This is indicated
by the presence of an asterisk.

The Monitor page display differs slightly between post-mortem and breakpoint
modes. In post-mortem mode the display includes the saved pointers for the low
priority process if the processor was running at high priority when analysed; in
breakpoint mode the display does not include these pointers but does include
the contents of the A, B, and C registers, if known. At startup in breakpoint mode
no machine pointers or register values are available (the program has not yet
started) and so no values are displayed.

A typical post-mortem startup display is shown in figure 7.2.

Toolset Debugger : V2.02.00 Processor 0 "example" (T800)

Processor State Memory map
Iptr #80003B7A Configuration code : #80000070 - #8000014F (224)
Wdaesc #801FFE3D Stack : #80000150 - #8000076F (1568)
Error Set Program code : #80000770 - #B80005A8F (21K)
FPU Error Clear Configuration code : #80005A90 - #80006293 (2052)
Halt On Error Set Freespace : #80006294 - ¥BOLFFFFF (2024K)
Fptrl (low Empty
Bptrl queue) Total memory usage :@ 25236 bytes (25K)
Fptr0 (high Empty
Bptr0 gqueue) On-chip memory (4K) : #80000000 - #80000FFF
Tptrl (timer Empty MemStart : #80000070

Tptr0 queues) Empty
Clockl (low) #000234C5 Debugger has enough memory for 805 processors
Clock0 (high) #008D3152

Error explicitly set, Last instruction was : seterr

thion (? for help) (A,C,D,E,F,G,HIKLMNMNOPQR,TVX?) ?

J/

Figure 7.2 Example post-mortem Monitor page display for a T800 processor

ltems displayed on the startup page and their meanings are summarised in Ta-
ble 7.2. Most of the data displayed is common to all transputer types. Where
the display differs for specific processor types and debugging modes, this is
indicated in the table.

72 TDS 275 02 March 1991

124 Debugging occam programs

Item displayed Description

Iptr Instruction pointer (address of the last instruction ex-
ecuted).

Wdesc Workspace descriptor (pointer to process workspace).

IptrIntSavet | Saved low priority instruction pointer, if applicable.

WdescIntSavet | Saved low priority workspace descriptor, if applicable.

A Registert
B Registeri
C Registerj

Contents of A register, if known.
Contents of B register, if known.
Contents of C register, if known.

Error Status of transputer error flag.

FPU Error Status of FPU error flag (T800 series only).
Halt On Error | Status of halt on error flag.

Fptrl Front pointer to low priority process queue.
Bptrl Back pointer to low priority process queue.
Fptr0 Front pointer to high priority process queue.
Bptzr0 Back pointer to high priority process queue.
Tptrl Pointer to low priority timer queue.

Tptr0 Pointer to high priority timer queue.
Clockl Value of low priority transputer clock.
ClockO Value of high priority transputer clock.

t Not available in breakpoint mode.
1 Not available in post-mortem mode. Not known in breakpoint mode on
processors with no hardware support for breakpointing.

Table 7.2 ltems displayed at the Monitor page

Process pointers

Iptr points to the last instruction executed and Wdesc to the process
workspace. Low priority Iptr and Wdesc are also displayed if the proces-
sor was running in high priority mode when it was halted. An asterisk placed
next to either an Iptr or Wdesc indicates an invalid memory location for the
process. ‘NotProcess’ Wdesc indicates that no process was executing on
the processor when it halted, which may occur in the presence of deadlock.

Practical note:

e If Wdesc contains the word ‘MemStart’ it is likely that the Analyse
signal has been asserted more than once on the network. This can

72 TDS 275 02 March 1991

7.9 Monitor page 125

occur on transputer boards where the subsystem signal is asserted on
analyse, as on the IMS B004. For further guidance on the use of such
boards refer to section 14.4,

o If Wdesc contains the word ‘NotProcess’ it means that there were no
runnable processes at that instant on the transputer (check timer and
external links for any waiting processes). See 7.10.2.

o |If WdescIntSave contains the word ‘NotProcess’ it means that a
low priority process was not interrupted when the high priority process
started running.

Fptr and Bptr point to the process run queues, which hold information about
processes awaiting execution. The suffix 1 indicates the high priority queue and
0 the low priority queue. If the front and back pointers are the same then only
one process is waiting; if there are no processes waiting the pointers have no
value and the queue is given as ‘empty’.

Tptrl and Tptr0 are pointers to the high and low priority timer queues re-
spectively.

Registers
In breakpoint mode only, the contents of the transputer registers Areg, Breg,
and Creg are displayed for those processors which have built in instructions for

breakpoint handling, (see table 7.1). Values displayed are those which were
current when the process stopped.

Error flags
Two flags are displayed for all processors: Error and Halt-on-error. The FPU

Error flag is also displayed for transputers with an integral floating point unit (IMS
T800 series).

Clocks
Clockl and ClockO display the values of the low and high speed transputer

clocks when the process was stopped. In breakpoint mode the clock values (and
queue pointers) can be updated using the Monitor page ‘U’ command.

Memory map

The memory map display is included on the standard startup display, as though
the Monitor page ‘M’ option had been automatically invoked. Any or all of the

72 TDS 275 02 March 1991

126 Debugging occam programs

following memory segments may be displayed, depending on the application
program and its configuration:

Runtime kernel / Configuration code
Stack (Workspace)

Program code

Vectorspace

Static area

Heap area

Configuration code

Freespace

7.9.2 Monitor page commands

Most Monitor page options are single-letter commands that you type in at the
Monitor page Option prompt. A few commands are mapped onto specific func-
tion keys. The commands that support breakpoint debugging are only available
when the debugger is invoked in breakpoint mode.

The main Monitor page commands allow you to disassemble and display trans-
puter memory, locate and debug processes, and examine the network processor
by processor.

The main commands for common debugging operations are introduced in the
following sections. Full details of all the commands can be found in chapter 14.

Examining memory

Specific segments of transputer memary can be displayed in hexadecimal, ASCII,
or any high level language type, or disassembled into transputer instructions.
The segment of memory to be displayed is specified by a starting address. A
map of the transputer's memory can be displayed giving the positions of code
and workspace. Commands for examining transputer memory are summarised
below.

Display memory in ASCII.
Disassemble into transputer instructions.
Display memory in hexadecimal.

Display memory in selected data type.
Memory map.

E=EEEE]

72 TDS 275 02 March 1991

7.9 Monitor page 127

Locating processes

Locating to code for specific processes is one of the major functions available
through the Monitor page. They allow processes other than the stopped or cur-
rent process to be located and examined anywhere on the network. Processes
can be located on the current processor by examining run queues, and on other
processors by jumping down transputer links.

Four commands are used, three to display waiting processes and one to jump
to the selected code of a process displayed by the other three.

[R] Display processes waiting on Run queues.

Display processes waiting on Timer queues.
Display processes waiting on Links.

Goto symbolic debugging for the selected process.

These commands can be used in a systematic way to trace all processes on a
network and determine the cause of program failure. The method is explained
in more detail in section 7.10.

Specifying processes
One command allows a specific process to be selected for symbolic debugging.

(0] Specify a process for symbolic debugging.

The '0’ command is useful for going directly to symbolic debugging for a specific
process whose details you have already noted earlier in the debug session.

Selecting processes
The ‘B’ command enables you to select a source file for symbolic display using
the filename of the object module produced for it. This option enables symbolic

locating (for setting breakpoints etc.) without needing to know Iptx and Wdesc
process details (as the ‘G’ and 'O’ options do).

Other processors

Two commands allow other processors on the network to be examined:

72 TDS 275 02 March 1991

128 Debugging occam programs

Go to next halted processor.

Go to specified processor.

Go to the next lowest numbered processor.
Go to the next highest numbered processor.

(1 [[o][m]

Breakpoint commands

The following commands support breakpointing. To use the commands the de-
bugger must be invoked with the ‘B’ command line option.

Breakpoint menu.

Jump into and run application program.

Show debugging messages and prompts menu.
Update processor status display.

Write value to memory.

Changing to post-mortem debugging

When a program crashes during interactive debugging you are able to change
to post-mortem debugging using the following command:

Postmortem debug current breakpoint session.

7.10 A method for debugging halted programs

7.10.1 Inspecting other processes

Most transputer programs consist of several processes running in parallel, either
on the same transputer or on a multitransputer network. The debugger only gives
access to one process at a time; in order to inspect variables in other processes
the debugger must be ‘located to' the process.

For systematic debugging it can be useful to locate all processes in the network
in turn and determine their status.

7.10.2 Locating processes

Processes are located by the debugger using the process Wdesc (Workspace
Descriptor), which is a base pointer for the data and variables that make up the

72 TDS 275 02 March 1991

7.10 A method for debugging halted programs 129

process.

Each process running on a transputer exists in one of several states. In the
systematic method each possibility is explored in turn until the errant process is
found. The possible states for a process are:

e Not yet started.

e Running on the processor.

e Waiting on a processor execution queue (Run queue).

¢ Waiting on a timer execution queue (Timer queue).

e Waiting for communication from another process on the same processor.

o Waiting for communication on a transputer link (Link information).

¢ Already stopped or terminated.

Running on the processor

For the stopped process the debugger automatically locates to the area of source
code where the error occurred.

Waiting on a run queue

Processes on the run queues can be located by first using the Monitor page ‘R’
command to display the list of waiting processes. A process can then be selected
by pressing ‘G’ (for ‘Goto process’), positioning the cursor on the desired process
and pressing [RETURN]

Pointers to the run queues are displayed on the Monitor page and can be used
to determine the overall status of the queue. If pointer addresses are displayed
there are processes waiting. If only a single process is waiting the front and
back pointers have the same value. If no processes are waiting the queue is
given as ‘Empty’.

Waiting on a timer queue

Processes waiting for a specified time are placed on the high and low priority
timer queues. These are similar to the run queues except that they are controlled
by the transputer clock.

Processes on the timer queues can be located by using the Monitor page ‘T’

72 TDS 275 02 March 1991

130 Debugging occam programs

command to display a list of processes and invoking the ‘G’ command to locate
to the required process. Pointers to the timer queues are displayed on the
Monitor page and can be used to determine overall queue status.

Waiting for communication on a link

Processes waiting for a hardware communication (input or output on a transputer
link, or an input on the Event pin) can be located by using the Monitor page ‘L’
command to display a list of waiting processes, and invoking the ‘G° command
to locate to the process. Links where no processes are waiting are given as
‘Empty’.

At most 9 processes can be waiting for a hardware communication, two for each
of the four links and one for the Event pin.

Waiting for communication on a channel

Processes waiting for a internal communication can be located from source level
using the [CHANNEL]. If there are no processes waiting on a channel the channel
is given as ‘empty’.

Processes stopped, terminated or not started

If the running process and all the waiting processes have been found, not forget-
ting all those processes waiting on all the internal channels, then any processes
still unaccounted for must either have finished or failed to start. These remain-
ing processes cannot be located to because there are no Wdescs for them, and
they must be accounted for by a process of elimination.

7.10.3 Locating to procedures and functions

When a procedure is called, the workspace pointer is moved. If the debugger
locates inside a procedure or function then only local variables, and variables
declared globally, are in scope and available for inspection.

To inspect variables or channels not in scope within the procedure or function use
the [BACKTRACE] key to locate to a position where the desired variable or channel
is in scope. To relocate back into the procedure or function use the [RETRACE
key.

72 TDS 275 02 March 1991

7.11 Library functions 131

7.11 Library functions
Four procedures are provided in the occam library to assist with debugging.

DEBUG. STOP and DEBUG . ASSERT are used to stop a process, the latter on the
failure to meet a specified condition; such events are treated as a program error
by the debugger. DEBUG.MESSAGE is used to insert debugging messages and
DEBUG. TIMER is used to aid debugging deadlocked programs. The procedures
are accessed by incorporating the directive #USE "debug.lib".

Function Description

DEBUG.ASSERT | Stops the process and alerts the debugger if the param-
eter evaluates FALSE.

DEBUG. STOP Stops the process and alerts the debugger.
DEBUG.MESSAGE | Inserts debugging messages in the program.

DEBUG.TIMER Places process on timer queue.

DEBUG.ASSERT and DEBUG. STOP allow a process to be stopped at any point
in the code, where it can then be debugged using the symbolic functions and
Monitor page commands. DEBUG.STOP always stops the process whereas
DEBUG.ASSERT only stops the process if the condition parameter evaluates to
FALSE.

The following short example illustrates their use. (An example illustrating the use
of DEBUG. TIMER is given in section 7.17.5).

-- Debugger example: debug.occ

-- Example of debug support procedures when used with
-- and without the debugger.

#INCLUDE "hostio.inc"
#USE "hostio.lib"
#USE "debug.lib"

PROC debug.entry (CEAN OF SP fs, ts, []INT free.memory)
BOOL x :
SEQ
-= FALSE will cause DEBUG.ASSERT to fail assertion test
x := FALSE

72 TDS 275 02 March 1991

132 Debugging occam programs

so.write.string.nl (fs, ts, "Program started")
DEBUG.MESSAGE ("A debug message only within the debugger")

so.write.string.nl (fs, ts,
"Program being halted by DEBUG.ASSERT ()")
DEBUG.ASSERT (x)

so.write.string.nl (£fs, ts,
"Program being halted by DEBUG.STOP ()")
DEBUG.STOP ()

so.exit (fs, ts, sps.success)

In this example if x is TRUE DEBUG.ASSERT evaluates to TRUE and the
program runs until it encounters DEBUG. STOP. If x is FALSE (as in the ex-
ample) DEBUG.ASSERT evaluates to FALSE and the process stops before it
reaches DEBUG. STOP. Code stopped by DEBUG.ASSERT and DEBUG . STOP
may be resumed from the line following the call of the debug procedure by using

the [CONTINUE FROM] key.

DEBUG.MESSAGE is used to insert debugging messages into the code. Mes-
sages are relayed back to the terminal from any point in the program, even from
code running on distant processors of a network. It can be used to monitor
the activity of outlying processors which are not directly connected to the host.
The display of debug messages at the terminal is controlled by an option on the
Monitor page Breakpoint Menu.

Details of the procedures can be found in part 2, section 1.10.

7.11.1 Action when the debugger is not available

If the debugger is not available on the system the debug library procedures have
the following actions:

Function Action

DEBUG.ASSERT | Stops the process (also stops the processor if configured
in HALT mode) if the parameter evaluates to FALSE.

DEBUG. STOP Stops the process (also stops the processor if configured
in HALT mode).

DEBUG.MESSAGE | No action.
DEBUG.TIMER Places process on timer queue.

72 TDS 275 02 March 1991

7.12 Debugging with isim 133

7.12 Debugging with isim

The T425 simulator isim provides a single processor interactive simulation of
a program running on an IMS T425 transputer, running on a boot from link
transputer board, and connected to a host computer through the host file server
iserver. The interactive environment provides a machine level (non-symbolic)
environment similar to the debugger Monitor page for debugging programs and
monitoring program execution.

The simulator allows any single processor program to be run and analysed with-
out a transputer board.

All the component parts of a program to be simulated, must be compiled for
the T425 transputer type (or compatible targets), linked together using ilink
(including libraries), and made bootable using icollect.

Note: The simulator can only be used to simulate single transputer programs.

7.121 Command interface
The simulator has a single command interface which corresponds to the de-

bugger Monitor page. Most commands are single letter commands and can be
invoked with a single key press. For a list of commands see chapter 23.

7.12.2 Using the simulator
The simulator can be used in two ways:
= To debug programs by inspecticn of the transputer and memory, in the
same way as with the debugger. Registers, memory, and machine state
can be examined directly at the Monitor page.
o To monitor the execution of programs using machine level single step

execution and the setting of break points at specific memory locations.
Code can be executed by stepping single instructions.

7.12.3 Program execution monitoring

The simulator provides a number of functions that can be used interactively to
monitor and control the behaviour of a program. These are:

¢ Breakpoints

72 TDS 275 02 March 1991

134 Debugging occam programs

o Single step execution of a program

A program can be stepped a single instruction at a time using the ‘s’ command.

Breakpoints

Breakpoints can be set, displayed, and cancelled using the ‘B’ command to
display the Breakpoint Options Page.

Single step execution

A program can be stepped a single transputer instruction at a time using the ‘s’
command.

7.12.4 Core dump file

isimmay be used to produce a core dump file that can be read by the debugger
(as if the code had been executed on a real transputer).

7.13 Debugging using embedded messages

This section describes an approach to debugging occam programs for use in
those situations where breakpoint debugging cannot be used.

Programs can be debugged using messages inserted at strategic points in the
program. These messages are output when the program runs and help to de-
termine changes in the program’s activity, such as the assignment of variables
and the calling of procedures.

This method is easily applied to programs running on single transputers and
connected directly to the host, but is less easy to use with programs running
on transputer networks. In transputer networks only the root transputer commu-
nicates directly with the host, and messages from distant processes must be
passed back to the root transputer through the intervening network.

A programming solution to the problem in 0OCCam is to pass the messages to
a process that stores them for later retrieval. The process can be run on each
transputer in the network that is to be debugged and could use a circular buffer
to optimise storage and record only the recent activity of the program.

The program could be coded as two processes, one that stores messages com-

ing from each transputer (the ‘buffer manager’ process), and another that formats
messages for presentation to the debugger. The ‘buffer manager’ process would

72 TDS 275 02 March 1991

7.14 Debugging example 135

run on each transputer running a debuggable process, whereas the message
formatter would run centrally and service all transputers in the network.

7.13.1 Reading the message buffers

For programs that fail and set the error flag the debugger can read the message
buffers by locating to the code that produced the error. For programs that ter-
minate normally, the buffers can be located using the debugger Monitor page
command ‘L’ to locate to a process pending on the host link. The buffer manager
process can then be brought into scope, the message buffer located in memory
and dumped to a file for reading.

7.14 Debugging example

This example illustrates some of the post-mortem and breakpoint features of the
debugger. The debugger is invoked in breakpoint mode.

7.14.1 The example program

The example program calculates the sum of the squares of the first n factorials,
using a rather inefficient algorithm. It has been structured this way for clarity in
process structure and to demonstrate parallel processing and debugging meth-
ods.

Note: The example is intended for running on a BO08 board wired subs. See
section 14.4 if your system is different.

The program incorporates five processes, each coded as a separate PROC. The
five processes in turn input n, calculate factorials, square the factorials, sum the
squares, and output the result. The program is listed below.

Note: Triple braces in the listing indicate fold marks in the program. They are

retained for compatibility with the folding editors often used for writing occam
programs.

72 TDS 275 02 March 1991

136 Debugging occam programs

-- Debugger example: facs.occ

-- Uses 5 processes to compute the sum of the squares of the
-- first N factorials using a rather inefficient algorithm.

== Plumbing:

s - > feed -> facs -> square -> sum -> control <--> User IO

#INCLUDE "hostio.inc"
#USE "hostio.lib"

PROC facs.entry (CHAN OF SP fs, ts, []INT free.memory)

VAL stop.real IS -1.0 (REALG64)
VAL stop.integer IS -1 :

--{{{ FUNC factorial - compute factorial
REAL64 FUNCTION factorial (VAL INT n)
REAL64 result
VALOF
SEQ
result := 1.0 (REAL64)
SEQ i = 1 FOR n
result := result * (REAL64 ROUND i)
RESULT result

-=}11}

=={{{ PROC feed - source stream of integers
PROC feed (CHAN OF INT in, out)
INT n
SEQ
in ? n
SEQ i = 0 FOR n
out ! i

out ! stop.integer

-=1}}
--{{{ PROC facs - generate stream of factorials
PROC facs (CHAN OF INT in, CHAN OF REAL64 out)
INT x
REAL64 fac
SEQ
in ? x
WHILE x <> stop.integer
SEQ
fac := factorial (x)

72 TDS 275 02 March 1991

7.14 Debugging example

137

out ! fac
in ? x
out ! stop.real

==1}}
--{{{ PROC square - generate stream of squares
PROC square (CHAN OF REAL64 in, out)

REAL64 x, sq :

SEQ
in ? x
WHILE x <> stop.real
SEQ
sq (= x * x
out ! sg
in ? x

ocut ! stop.real

=~}¥}
--{{{ PROC sum - sum input
PROC sum (CHAN OF REAL64 in, out)
REAL64 total, x :
SEQ
total := 0.0 (REALE4)
in ? x
WHILE x <> stop.real
SEQ
total := total + x
in ? x
ocut ! total

==¥)}
-=-{{{ PROC control - user interface and control
PROC contrel (CHAN OF SP fs, ts,
CHAN OF REAL64 result.in,
CHAN OF INT n.out)
REAL64 value :
INT n :
BOOL error :
SEQ
so.write.string.nl (fs, ts,
"Sum of the first n squares of factorials")

error := TRUE
WHILE error
SEQ
so.write.string (fs, ts, "Please type n: ")
so.read.echo.int (fs, ts, n, error)
so.write.nl (fs, ts)

so.write.string (fs, ts, "Calculating factorials ...")

n.out ! n
result.in ? value

so.write.nl (fs, ts)

72 TDS 275 02 March 1991

138 Debugging occam programs

so.write.string (fs, ts, "The result was: ")
so.write.realé6d (fs, ts, wvalue, 0, 0) -- free format
so.write.nl (fs, ts)

so.exit (fs, ts, sps.success)

==}1}

CHAN OF REAL64 facs.to.square, square.to.sum, sum.to.control :
CHAN OF INT feed.to.facs, control.to.feed :

PAR
feed (control.to.feed, feed.to.facs)
facs (feed.to.facs, facs.to.square)
square (facs.to.square, square.to.sum)
sum (square.to.sum, sum.to.control)
control (fs, ts, sum.to.control, contrecl.to.feed)

7.14.2 Compiling the facs program
The source of the program is provided on the toolset examples directory. It
should be compiled for transputer class TA with debugging enabled, then linked

with the appropriate library files and made bootable using icollect using the
‘T’ option to create single transputer bootable code.

Using imakef

If your system has a MAKE utility you may use imakef£ to generate a suitable
Makefile to help build the program:

imakef facs.bah

make -f facs.mak (UNIX)
make /f facs.mak (MS-DOS/VMS)

Using the tools directly

A typical sequence of commands for compiling, linking, and booting the program
is shown below. The ‘i’ option on the linker command line is optional but does
provide useful information on the progress of the linking operation.

Command sequences follow for UNIX-based and MS-DOS/VMS-based toolsets.
Use the appropriate set of commands for your system.

72 TDS 275 02 March 1991

7.15 Breakpoint debugging 139

UNIX:

oc -ta facs.occ -o facs.tah

ilink -ta facs.tah hostio.lib convert.lib -f occama.lnk
-o faecs.cah

icollect -t facs.cah -o facs.bah

MS-DOS/VMS:

oc /ta facs.occ /o facs.tah

ilink /ta facs.tah hostio.lib convert.lib /f occama.lnk
/o facs.cah

icollect /t facs.cah /o facs.bah

7.15 Breakpoint debugging

The following section demonstrates how to debug the example £acs program in
breakpoint mode. This example of breakpoint debugging assumes the hardware
configuration shown in figure 7.3.

g 32 btit 2 tT425t
o0 arge
? transputer transputer

Figure 7.3 Hardware configuration for breakpoint example

7.15.1 Prerequisites for breakpoint debugging

You should ensure that the appropriate environment variables described in sec-
tion 2.10.4 have been initialised before you proceed.

7.15.2 Loading the program

The program is loaded for breakpoint debugging by invoking idebug with the
Breakpoint option in the commands given below. Use the appropriate command

for your system.

idebug -sr -si -b2 facs.bah -c t425 (UNIX)
idebug /sr /si /b2 facs.bah /c t425 (MS-DOS/VMS)

72 TDS 275 02 March 1991

140 Debugging occam programs

The command starts up the debugger and displays the Monitor page but does
not start the program. The iserver ‘si’ switch is optional.

Note: If your transputer is not a T425 you should change the T425 option to the
appropriate transputer type. You may also need to change the number specified
after the "o’ option to the number of the root transputer link where your network
is connected.

See Table 14.3 for more details about the options to use if in doubt.

7.15.3 Setting initial breakpoints

Initial breakpoints can often be set by invoking the Monitor page ‘B’ command and
specifying an entrypoint breakpoint (this would set a breakpoint at facs .entry).
In this example a different method is used based on setting specific breakpoints
in the source code before the program is started.

At the Monitor page select option ‘F” to display the source file. At the object mod-
ule filename prompt specify the compiled object file facs.tah. The debugger
uses debug information within the object module to select the source file.

The source file facs.occ is displayed with the cursor positioned at the first
procedure definition, namely facs.entry. At this point the program is still
waiting to be started.

Use [GOTO LINE] to move the cursorto line 56 (out ! fac) and set a breakpoint
there using [TOGGLE BREAK]. The debugger confirms the breakpoint is set.
7.15.4 Starting the program

Return to the Monitor page using the key and start the program by se-
lecting the ‘J” option. Press[RETURN] at the ‘Command line' prompt (no command
line is required) and give a small positive number (e.g. 12) when the program
prompts for input. The program runs until it reaches the breakpoint.

7.15.5 Entering the debugger

At the breakpoint the debugger requests confirmation to continue. Press any key

except ‘C’ or ‘e’ to enter the symbolic debugging environment. The debugger
locates to the breakpoint and displays the source code.

72 TDS 275 02 March 1991

7.15 Breakpoint debugging 141

7.15.6 Inspecting variables

Variables and channels in £acs can now be examined. For example, to examine
the variable fac move the cursor to fac and press The debugger
displays the value as REAT.64 1.0 and gives its address. Pressing
with the cursor positioned on a space causes the debugger to prompt you for a
symbol.

Note that only variables in scope at the debugger's current location point can
be inspected, although the rest of the file can be displayed with the cursor keys.
The current location point is line 56 in the procedure facs.

7.15.7 Backtracing

facs is called in parallel by facs.entry to output the factorial it calculates
for each integer received from £feed. To confirm this press and the
debugger locates to the line in facs.entry where facs is called. Press
to return to where the breakpoint occurred. The current location point is line 56
in the procedure facs.

7.15.8 Jumping down a channel

Within facs the variable fac is the first in a sequence of outputs on the channel
out. To trace the destination process for £ac first the channel out.
The debugger displays an Iptr and Wdese, indicating that there is a low priority
process waiting at the other end of the channel.

Now press and again specify out. The debugger jumps down the
channel connecting the two processes and locates to the corresponding channel
input in procedure square (in ? x statement). Variables in scope within
square now become available for inspection (at this stage they have not been
initialised).

7.15.9 Modifying a variable

In breakpoint debugging program variables may be modified. Start by first in-
specting x in order to ensure that the new value will be different. To modify
the variable x position the cursor on x and press [MODIFY] At the modify value
prompt specify the value to be placed in x. Note that the modify prompt reminds
you of the type of x. Give any valid value and check the value has changed by
inspecting x once again.

72 TDS 275 02 March 1991

142 Debugging occam programs

7.15.10 Entering # INCLUDE files

Press and select line 17. This will locate you to the
#INCLUDE "hostio.inc" line. By using the key you may now
enter the #INCLUDE file (and any nested files within it if they were present);
the key will bring you out again into the enclosing file.

7.15.11 Resuming the program

To resume execution of the program from the current breakpoint press
the key. This will cause the program to resume until it encounters
the breakpoint again. Press an appropriate key to enter the symbolic debugging
environment. This will cause the debugger to locate to line 56.

7.15.12 Clearing a breakpoint

To clear the breakpoint already set at line 56 use the key. The
debugger will confirm that the breakpoint has been cleared. Press [RESUME] to
resume execution and cause the program to display its result.

The debugger will confirm that the program has finished and will pause in order
to enable you to read the output from the program. Press any key as indicated
to enter the Monitor page. Note that the Monitor page displays the exit status
from the program.

7.15.13 Quitting the debugger

Finally, to quit the debugger you can use the Monitor page ‘Q' command. You
may also quit the debugger from Symbolic mode by using the key.

72 TDS 275 02 March 1991

7.16 Post-mortem debugging 143

7.16 Post-mortem debugging

The following section demonstrates how to debug the example £acs program
in post-mortem mode. This example of post-mortem debugging assumes the
hardware configuration shown in figure 7.4.

T425
root
transputer

—0nOI

Figure 7.4 Hardware configuration for post-mortem example

7.16.1 Prerequisites for post-mortem debugging

You should ensure that the appropriate environment variables described in sec-
tion 2.10.4 have been initialised before you proceed.

7.16.2 Running the example program

When you have built an executable code file you can run the program by typing
one of the following commands:

iserver -se -sb facs.bah (UNIX)
iserver /se /sb facs.bah (MS-DOS/VMS)

The program immediately prompts you for a value. For correct execution the
number must be less than 100.

To create an error for the purpose of this tutorial, give the value 101 and press
[RETURN]. The program will fail with the message:

Error - iserver - Error flag raised by transputer.

7.16.3 Creating a memory dump file
To create a memory dump file for the debugger to read, type:
idump facs 15000

This creates a file called £acs . dmp containing the transputer’s register contents

72 TDS 275 02 March 1991

144 Debugging occam programs

and the first 15000 bytes of memory. You are then returned to the operating
system prompt.

7.16.4 Running the debugger

To debug the example program, use one of the following commands:

idebug -si facs.bah -r facs -c t425 (UNIX)
idebug /si facs.bah /r facs /c t425 (MS-DOS/VMS)

The iserver ‘si’ switch is optional. The ‘r’ option identifies the program as
one that was executed on the root transputer and specifies the memory dump
file to be read.

Note: If your transputer is not a T425 you should change the T425 option to
the appropriate transputer type.

Should you wish to invoke the debugger a second time on this single processor
example, without an intervening idump command, you will need to add the
iserver ‘sx’ option to the command line (see section 14.3.5).

The debugger first displays its version number, then some processing informa-
tion, and eventually locates to the source line from which the error was generated:

sq = x * x

You can now begin to debug the program. You can use the symbolic facilities to
browse the source, locate to specific lines and areas of code, inspect variables
and channels, and trace procedure calls, and you can inspect and disassemble
memory using the Monitor page commands.

The following sections illustrate some of the debugging operations you can per-
form on the example program. For further details about any of the debugging
functions described in these sections, see chapter 14.

Inspecting variables

When the debugger is displaying source code, you may inspect any variable by
placing the cursor on the variable and pressing [INSPECT].

For example, to display the value of x, place the cursor over x in the source code
and press [INSPECT]. x is displayed in both decimal and hexadecimal forms, and

72 TDS 275 02 March 1991

7.16 Post-mortem debugging 145

its address in memory is given in hexadecimal. For example:

REAT.64 ‘x’ has value ...
9.3326215443944096E+155 (#605166C698CF1838) (at
#80000464)

In the same way you can inspect the values of sq, square, stop. integer,
stop.real, and any other variable that is in scope. Use the cursor keys to
scroll through the code. To return to the source of the original error, use the

RELOCATE] function.

You can also use the function to examine procedures and functions. If
you place the cursor on a procedure or function name and press [INSPECT], the
debugger displays its address and workspace requirements.

You can also examine any symbol in the source by specifying its name. To do
this, move the cursor to a blank area and press The debugger then
prompts for the symbol name.

Inspecting channels

The debugger can also examine processes on channels within the scope of
the original error. If you place the cursor on channel out and press [INSPECT],
information about the channel is displayed. For example:

CHAN ‘out’ has Iptr:#800022F8 and Wdesc:#80000381
(Lo) (at #8000063C)

This indicates that there is a process waiting for communication on channel out,
and that it is a low priority process. To find out which occam process is waiting,

press [CHANNEL]. The cursor will be placed on the line corresponding to the other
process, which in this example is inside the procedure sum, on the following line:

in ? x
Within procedure sum, you can examine any symbol using
Within the sum procedure you can inspect the channel out and use
to jump to the waiting process, which is the procedure control that is waiting
for the final result. Again you can use [INSPECT] to examine any symbol.

Retracing and Backtracing

So far the debugger has located three of the five processes that compose the
program. What about the others?

First use the key to retrace your steps back to procedure square.
72 TDS 275 02 March 1991

146 Debugging 0ccam programs

When in procedure square, inspect channel in, which is connected to the
facs procedure. It is empty, which means that no process is waiting to com-
municate.

Next try [BACKTRACE] This function backiraces down nested procedure calls.
Each time the function is invoked the cursor is placed on the line in the enclosing
code from which the procedure was called.

In this example, moves the cursor to the line where procedure
square is called. Again, you can inspect any symbol which is in scope at
this line. For example, you can inspect the channels feed.to.facs and
facs.to.square. Both should be empty, which means that the remaining
processes were actively executing, rather than waiting to communicate, when
the program halted.

To find the active processes, you need to examine the transputer's process
queues using the Monitor page facilities, as described below.

Displaying process queues

To display the process queues, first enter the debugger Monitor page from the
symbolic environment by pressing the key. Low level information is
displayed for the current processor, along with a list of Monitor page commands.

To display the processor's active process queues, use the Monitor page ‘R’
command. This displays two active processes, identified by their respective
Iptr and Wdesc. When you have identified the processes to examine, you
can use the Monitor page ‘G' command to jump to those processes and inspect
the code.

Other commands to try from the Monitor page are ‘T’, which displays the pro-
cesses waiting on the transputer's timers; and ‘L’, which displays processes
waiting for communication on the transputer’s links.

Goto process

When you press ‘G, the following message is displayed:

[CURSOR] then [RETURN], or 0 to F, (I)ptr, (L)o,
or (Q)uit

To jump to a specific process and display the source code associated with that
process, place the cursor on an Iptxr and press [RETURN].

Commands ‘I' and ‘L', allow you to jump to the main process or low priority
process respectively, and commands ‘0" - ‘" allow you to display specific lines
on the right hand side of the display.

72 TDS 275 02 March 1991

7.16 Post-mortem debugging 147

To display the first active process, type ‘0’ (zero). The cursor will be placed on
the following source line (in procedure ‘feed’):

out ! i

Because this process is on the queue and not waiting, it must have already per-
formed the communication and is about to resume executing. You can examine
variables within the procedure as before.

To display the last remaining process in the program, press again, and
type ‘G’ followed by ‘1’ to locate to the second process in the queue.

This process will either be executing code within the compiler libraries or within
the replicated SEQ. If it is executing code within a library, the debugger displays
the call to the library routine rather than the source itself, because the source is
not supplied. For example:

result := result * (REAL64 ROUND i)
Again, you may inspect variables within the process. For example, by inspecting
the variable ‘i’, you can determine how many times the loop has been executed.
Or you can use to determine where the function was called from.
Other symbolic functions

Other symbolic functions that you may like to try while you are in the debugger
are listed below.

TOP Returns to the error location, or last location selected
by Monitor page ‘G’ command.

Displays Iptr, Wdesc, and priority, of the last posi-
tion located to, together with the processor type and
number.

Allows you to search forward through the file for a
specific string.

Displays a summary of debugger function keys.

[o]

ET ADDRESS| Displays the memory address of the transputer code
corresponding to the current source line.

HANGE FILE] Allows you to examine any file.

II

ENTER FILE Allows you to open and examine included files.

72 TDS 275 02 March 1991

148 Debugging 0CCam programs

Allows you to close included files.
GOTO LINE] Moves to a particular line of the file.

Moves to the first line of the file.
Moves to the last line in the file.

7.17 Hints and further guidance

This section contains some hints about specific debugging operations and some
guidelines to follow when analysing deadlocks in 0ccam programs.

7.17.1 Invalid pointers

The debugger checks instruction pointers (Iptrs) and workspace descriptors
(Wdescs) for the correct code and data limits. Invalid pointers are flagged by
an asterisk (*) on the screen.

Invalid pointers indicate a major problem with the program. They may also be
caused by specifying an incorrect dump file.

7.17.2 Examining and disassembling memory

Within the Monitor page environment, the debugger keeps a record of two mem-
ory addresses; the start address of the last disassembly, used as the default by
the ‘D’ command, and the address of the last region of memory to be displayed,
used by the ‘A, ‘H’, and ‘I’ commands.

This allows you to switch easily between code disassembly and memory display.
You can, for example, disassemble a portion of memory using the ‘D’ command,
examine its workspace in hex using the ‘H' command, and then return to the
original address by invoking the ‘D' command once again.

7.17.3 o0occam scope rules
The debugger can only display the values of variables that are in scope. For

example, division by zero in the following procedure r would cause an error,
and the debugger would locate to that source line.

72 TDS 275 02 March 1991

7.17 Hints and further guidance 149

-- Debugger example: scope.occ

-- Example of occam variable scope rules.

#INCLUDE "hostio.inec"
#USE "hostio.lib"

PROC scope.entry (CHAN OF SP fs, ts, []INT free.memory)

PROC p ()
INT a :

PROC g (VAL INT b)
INT c
SEQ
c :=Db + a

PROC r (VAL INT d)
INT e
SEQ
e =0
e :=d / e -— <== The debugger will locate
- to here after the error

INT x
SEQ
x, a := 99, 57
INT vy :
SEQ
y = 42
q (y)
r (x) —-— <== And backtrace to here

SEQ

p ()
so.exit (fs, ts, sps.success)

At the line that contains the division by zero, variables e, d, and a are in scope
and may be inspected, but variables x, y, ¢, and b are out of scope and cannot
be inspected.

72 TDS 275 02 March 1991

150 Debugging occam programs

If the debugger now located to the call of z, the only variables in scope and
accessible for inspection would be a and x.

7.17.4 Debugging IF and CASE statements

IF constructs with no TRUE guards, and CASE constructs where no selections
are matched, stop the program as though a STOP statement had been encoun-
tered in the program. This avoids the need to create a default case each time
the statements are used.

However, it can be useful for the purpose of debugging these statements, to use
a default case. If a default is specified, the debugger can locate directly to the
STOP statement within the construct, which indicates exactly where the error
occurred.

7.17.5 Analysing deadlock

Deadlocks that occur in multitransputer networks can be debugged by using
the Monitor page ‘L' command to examine processes on the transputer links.
Deadlocks in single transputer programs are more difficult to debug because
there is no way to enter the program; there are no active processes from which
to inspect channels, and no links to other transputers to provide an alternative
entry point.

In practice, it is often obvious to the programmer which channel or channels
are causing deadlock, and a dummy process can be added to the program to
provide an entry point for the debugger.

Consider the following code:

72 TDS 275 02 March 1991

7.17 Hints and further guidance 151

-- Debugger example: deadlock.occ

-- Example of deadlock.

#INCLUDE "hostio.inec"
#USE "hostio.lib"

PROC deadlock.entry (CHAN OF SP fs, ts, []INT free.memory)

PROC deadlock ()
CHAN OF INT c :
PAR

SEQ
c ! 99
c ! 101

INT x :
SEQ

-—- <== Missing second input
SEQ

deadlock ()
so.exit (fs, ts, sps.success)

The program can be debugged by adding a process that will remain idle (by
waiting on a TIMER) while the program is debugged. An example of the type of
code that is required is illustrated below.

72 TDS 275 02 March 1991

152 Debugging occam programs

-- Debugger example: deadfix.occ

-- Example of deadlock and how to provide
-- debugging support.

#INCLUDE "hostio.inc"
#USE "hostio.lib"
$USE "debug.lib"

PROC deadfix.entry (CHAN OF SP fs, ts, []INT free.memory)

PROC deadlock.debug ()
CHAN OF INT c¢ :
CHAN OF INT stopper :
PAR
DEBUG.TIMER (stopper) -- Hook for debugger
SEQ
PAR
SEQ
c ! 99
c ! 101

INT x :
SEQ
c?x
-— <== Missing second input

stopper ! 0 -- terminate debug.timer

SEQ
deadlock.debug ()
so.exit (fs, ts, sps.success)

The procedure DEBUG. TIMER is supplied in the occam library debug.1lib.
The process lies dormant on the processor’s timer queue waiting for a time as
far into the future as the processor can provide. When the timeout expires, the
process places itself back on the timer queue.

Such a process provides a hook into the program for locating deadlocked pro-
cesses because the process is always accessible to the debugger on the timer

72 TDS 275 02 March 1991

7.18 Points to note when using the debugger 153

gueue. By locating to it you can access variables which are in scope at the
point of its execution and thereby detect the deadlock. In the modified program
a deadlock still forms in the procedure, but there is now a way to enter the
program.

To enter the program and inspect the deadlock, first invoke the Monitcr page envi-
ronment, and use the Monitor page ‘T" command to inspect the transputer's timer
queue, on which there will be a process waiting. Use the ‘G’ command to go to
that waiting process, and the debugger will locate to the call of DEBUG . TIMER.

You can then use to examine the channel ¢ where the program has
deadlocked, and which will therefore contain the process that is waiting for com-
munication. Finally you can use to jump to the deadlocked process.

The compiler does not insert this kind of debugging code automatically, for sev-
eral reasons. Firstly, it is the philosophy of the 0ccam toolset not to alter the
runtime code in any way. Secondly, most programs use many channels, and the
execution overheads and code size could become unacceptably large. Again
for the above example code this would be unimportant because the process
consumes no CPU time, but this may not be true for many programs. Lastly, it
could be difficult to distinguish the true deadlocked process from the many idle
debug processes waiting on the timer queues.

7.17.6 Inspecting soft configuration channels

Soft channels declared at the configuration level (i.e. those internal to a proces-
sor which are not placed on its external links) may be inspected from the Monitor
page by knowing that they are located near the beginning of the Configuration
code area which appears after the user Program code area (as displayed by the
Monitor page Memory map command).

7.18 Points to note when using the debugger

This section contains some extra information which may be of use when using
the debugger.

7.18.1 Abusing hard links

Current generation transputers permit unsynchronised transfer of messages on
external channels (links). This allows, for example, two 4-byte messages to be
sent and for them to be received as a single 8-byte message on the receiving
transputer. This is not consistent with the communication of messages between
processes on the same processor where the transfer of messages is synchro-

72 TDS 275 02 March 1991

154 Debugging occam programs

nised.

When breakpoint debugging, external communications are handled by the de-
bugger’s virtual link system; this is an internal transfer which is liable to function
incorrectly if user code is relying on unsynchronised transfers.

Unsynchronised transfer of data should not be used where breakpointing is used
to debug a program. It is bad practice anyway and will certainly cause the
debugging virtual link system, on which breakpointing depends, to crash.

7.18.2 Examining the active network (the network is volatile)

When a process stops at a breakpoint you should remember that all of the other
processes are still running (unless they hit a breakpoint, terminate etc.). This
means that any of the Monitor page commands that display process queues
(eg. R, L, T etc.) may change if you invoke them again (or use the ‘U’ (Update)
command to update the state information). When in symbolic mode the same is
true for Channels which may appear empty when first inspected only to change
to a waiting process when inspected again.

The only way to effectively freeze all processes is to flip to post-mortem mode by
using the Monitor page ‘Y’ (Enter Postmortem) command. You should remember
that when you use this command that all processes that have hit a breakpoint
will not appear in the runtime queues. If this is a problem, you should note the
Iptr and Wdesc values of the processes and use the Monitor page 'O’ (Select
Process) command to locate to them symbolically.

7.18.3 Using [INSPECT] with channel communications

When debugging a program compiled for interactive debugging it should be re-
membered that any channel communication is achieved via library calls. As a
consequence, the key may display an Iptr relating to code in the
debugging kernel system rather than the Iptr of a user process waiting on
the channel. This may lead to channel communications not involved with an
ALT appearing to having the same process Iptr (the Wdesc will be valid and
unique). In order to correctly establish the Iptx of the process waiting at the
other end, you should use the key to locate to the process followed by
the key to obtain process details.

7.18.4 Selecting events from specific processors

The debugger provides no guarantee that debugging events such as breakpoints
and debugging messages from processes running on different processors are

72 TDS 275 02 March 1991

7.18 Points to note when using the debugger 155

presented in the same order in which they occur. Events on processors which
are closer in terms of connectivity to the root transputer (where the debugger is
running) are usually displayed before events on distant processors.

If it is important that you encounter a debugging event on a specific processor
before events on other processors you can usually achieve this by changing to
the processor of interest (using the Monitor page ‘P’ command or left and right
cursor keys) before resuming via the ‘I’ command.

7.18.5 Minimal confidence check

A first level confidence check to perform with a program which is misbehaving
is to perform a compare memory check using the Monitor page ‘C’ command.
This will help to highlight any memory corruption problems which may occur due
to faulty memory or faulty program logic. You should always ensure that no
compiler checks have been disabled to prevent the latter.

7.18.6 INTERRUPT key

The debugger can be diverted from the running program to return to the Monitor
page by the use of the key. However, problems can arise if the
running program is trying to simultaneously read keystrokes from the keyboard;
the debugger is then unable to intercept the interrupt key. (Sometimes it is
possible to force the interrupt to be recognised by repeating the key quickly.)

A similar problem arises when there are existing keystrokes buffered before the
interrupt key; if the application program does not read these buffered keystrokes
the debugger will never have a chance to see the interrupt key.

7.18.7 Program crashes

If in breakpoint mode the debugger detects that the program has crashed im-
mediately after starting program execution (i.e. after invoking the ‘J" (Jump into
application) command), you should use the post-mortem breakpoint option (‘Y’")
to determine the cause. However, if no error flags are set on the network that is
running the program then it is likely that the an error flag is set on a transputer
that is not in use. This may occur on boards where the subsystem services are
wired to propagate all error flags to the root transputer. In this instance you need
to clear the network (see section 14.3.6 for more details).

72 TDS 275 02 March 1991

156 Debugging 0ccam programs

7.18.8 Undetected program crashes

When operating in breakpoint mode and a program overwrites the debugging
kernel or you have set a breakpoint in a high priority process on a processor
without hardware breakpoint support, the debugger cannot fully recover and is
unable to indicate that the program has crashed. In this situation the debugger
fails to update the screen other than to put the following message at the top of
the screen when it attempts to display the Monitor Page:

Toolset Debugger : V2.02.00 Processor n "name" (Tm)

In such instances you should use the host BREAK key in order to terminate
the debugger and restart the debugger using the command line ‘M’ option to
post-mortem debug the session.

7.18.9 Debugger hangs when starting program

If the debugger hangs immediately after you have supplied the command line
arguments when starting execution of a program you have probably set a break-
point in a configuration level High priority process on a processor without hard-
ware breakpoint support.

7.18.10 Debugger hangs

If the debugger hangs when attempting to flip to post-mortem using the Monitor
page ‘Y’ command or when trying to quit, you should terminate the debugger
manually using the host BREAK key.

If you were trying to flip to post-mortem mode you should restart the debugger
using the command line ‘M’ option to resume debugging in post-mortem mode.

7.18.11 Catching concurrent processes with breakpoints

Sometimes a concurrent process is executing in a program (often in a loop)
and you would like to be able to control it better by use of breakpoints. If the
process is communicating with other processes via channels and you have set
breakpoints in the other processes, breakpoints can be set on a communication
and the channel can be jumped down to the executing process when you hit'the
breakpoint.

However, if the process has entered a non-communicating loop or you are not

sure where exactly it is in your program code you must use a different approach.
In order to set a breakpoint, you should use the key to return to the

72 TDS 275 02 March 1991

7.18 Points to note when using the debugger 157

Monitor page and then, by using the ‘R’ (Run queues) command and/or the ‘T’
(Timer queues) command, list the Iptrs and Wdescs of the processes currently
executing. (Often, this will include the debugging kernel processes but these are
easily detected and ignored because they are marked by an asterisk.)

Use the ‘G’ (Goto process) command to select the Iptr and Wdesc of the
process to locate symbolically to the process and set a breakpoint on that line.
Then return to the Monitor page and resume the debugger using the ‘J' com-
mand; when the process hits the breakpoint you may continue to debug it. If
there are no processes on either the runtime or timer queues and there are no
external communications, it means that your program has either deadlocked or
terminated.

7.18.12 Phantom breakpoints

Because of the mechanism used for breakpoints on those transputers without
hardware breakpoint support (see Table 7.1) it is possible for code produced by
INMOS compilers to contain code that fools the debugger into thinking it is a
breakpoint (a phantom breakpoint). This may occur with oc and other TCOFF
compatible INMOS compilers such as ice.

The following 0CCam code generates a phantom breakpoint.

WHILE TRUE
SKIP

If you encounter a phantom breakpoint and you wish to continue execution, you
must set a breakpoint at the same address and then resume execution.

To do this use the key to obtain the start address of the empty
loop when in symbolic mode, change to the Monitor page and use the Breakpoint
Set option to set a breakpoint at the loop address.

7.18.13 Breakpoint configuration considerations

When breakpoint debugging you should remember that the root transputer of a
network is used by the debugger for its own purposes.

On some transputer motherboards with an inbuilt pipeline, the root transputer
is normally booted down link 0; subsequent transputers in the pipeline boot
down link 1. This may (accidently) be a problem if you simply take a network
configuration which was not configured with breakpoint debugging in mind (eg. a
pipeline configuration) and attempt to breakpoint debug it. The debugger will in
effect, attempt to skip load it onto the rest of the network; the program may load
(if by chance the right link connections are available), if the boot link is different

72 TDS 275 02 March 1991

158 Debugging occam programs

it will not be able to talk to the host (iserver) when it executes.

Such an event may easily be verified by using the Monitor page ‘L’ option when
positioned on processor 0. This will indicate whether the root transputer booted
from a different link to that specified in the configuration file.

When breakpoint debugging, the debugger will warn you if the boot is different
from that expected for the root processor, before the network is loaded.

7.18.14 Determining connectivity and memory sizes

In order to establish the connectivity and memory map range for each processor
in a program you should use the icollect 'P’ option.

Alternatively you may use the debugger command line dummy debug 'D’ option.

7.18.15 Long source code lines

Source code lines longer than 500 characters cause the symbolic source code
browser to treat them as multiple lines and subsequently it will loose line syn-
chronisation; (i.e. it displays incorrect line number information).

7.18.16 Setting breakpoints on the transputer seterr instruction

The debugging kernel does not resume the transputer seterr instruction with
its original (correct) Iptxr (it resumes it with an Iptr within the kernel area).
Because a kernel operates in Halt-on-Error mode, the seterr instruction has
the effect of halting the processor. The effect of the incorrect Iptr is only
apparent if you subsequently switch to post-mortem debugging whereupon the
debugger will complain that it is unable to locate to an Iptr within the kernel
area. If this is a problem, you should note the Iptr before resuming from the
breakpoint.

This problem will occur if you resume from a breakpoint on an occam STOP
statement which has been compiled in either Halt or Universal error modes.

7.18.17 Backtracing to occam configuration code

When used in conjunction with the occam configurer occonf, idebug is
able to backtrace to the occam configuration source code. Symbolic debug
information provided by the configurer at this level is, however, not complete
(although sufficient to enable correct source line locating), and as a consequence
you are unlikely to be able to inspect variables, channels or constants.

72 TDS 275 02 March 1991

8 Access to host
services

This chapter describes how programs communicate with the host computer via
the host file server and the i/o libraries. It briefly describes the protocols used,
outlines how to place host channels on a transputer board, and discusses how
processes can be multiplexed to a single host.

8.1 Introduction

occam, like most high level programming languages, is independent of the
host operating system. At the programming level, communication with the host
is achieved via a set of i/o libraries that are provided with the toolset. The libraries
in turn use the services provided by the host file server.

The host file server and the functions it provides are transparent to the program-
mer. The server functions are activated whenever a program is loaded using

the iserver tool. Programs that use the i/o libraries should always be loaded
using iserver.

For an example of a program that communicates in a simple way with the host
computer, including details of how it is compiled, linked and loaded, see chap-
ter 4.

8.2 Communicating with the host

Programs communicate with the host through i/o library routines that in turn use
functions provided by the host file server.

8.2.1 The host file server

The host file server provides the runtime environment that enables application
programs to communicate with the host. It contains functions for:

e Opening and closing files
e Reading and writing to files and the terminal

o Deleting and renaming files

72 TDS 275 02 March 1991

160 8 Access to host services

e Returning information from the host environment, such as the date and
time of day

¢ Returning information specific to the server, such as a version number
¢ Starting and stopping the server.

Details of the server functions can be found in part 2 appendix H.

8.2.2 Library support

Two i/o libraries are provided for accessing the file system and other host ser-
vices. The libraries are summarised below.

hostio.lib File and terminal i/o; host access
streamio.lib Stream-based terminal and file i/o

All routines in these libraries are independent of the host operating system.

The hostio library contains basic routines for accessing files and controlling the
file system. It also contains routines for general interaction with the host. Use
the hostio library for basic file operaticns, and for accessing host services.

The streamio library contains routines for creating and outputting to streams. It
also provides primitives for reading and writing text and numbers, and for con-
trolling the screen. Use the streamio library for inputting and outputting character
and data streams.

Definitions of constants and protocols used within the libraries are provided in
the include files hostio.inc and streamio.inc. These files should be
included in all programs where the respective libraries are used.

Details of all i/o procedures and functions can be found in part 2 chapter 1.

8.2.3 File streams

The host file server supports a stream model of file and terminal access. When a
file is opened a 32-bit integer stream id is returned to the program. This identifier
must be quoted by the program whenever the file is accessed, and is valid until
the file is closed.

Streams and files must be explicitly closed by the programs that use them, and
the server must be explicitly terminated when the program finishes and host

72 TDS 275 02 March 1991

8.3 Host implementation differences 161

services are no longer required.
Three streams are predefined:

spid.stdin standard input
spid.stdout standard output
spid.stderr standard error

These streams can be closed by the programmer, but cannot be reopened. Take
care not to close the standard streams if you are using hostio routines that read
or write to them. The streams can only be closed by specifying the streamid
explicitly and cannot be closed inadvertently using the hostio routines.

Standard input and output are normally connected to the keyboard and screen
respectively, but may be redirected by the operating system.

Streams and files other than the three standard streams described above must
be explicitly closed by the program. When the program finishes and host ser-
vices are no longer required, the server should be terminated by the transputer
application calling so .exit.

Protocols

occam programs communicate with the host file server through a pair of occam
channels. Requests for service are sent to the host on one channel and replies
are received on the other. Both channels use the SP protocol, which is defined
in the include file hostio. inec.

8.3 Host implementation differences

The IBM PC version of the host file server supports a number of DOS specific
commands. For details of the routines provided for this implementation see the
Delivery Manual that accompanies the release. The VAX VMS and Sun 3 UNIX
implementations have no host specific commands.

If you wish to write programs that are portable between all implementations of

the toolset you are recommended to use only host independent routines. All pro-
cedures and functions in the hostio and streamio libraries are host independent.

72 TDS 275 02 March 1991

162 8 Access to host services

8.4 Accessing the host from a program

For programs to be run on transputer boards the host is accessed through the
channels £s and ts, both defined as CHAN OF SP. Protocol SP is defined in
the include file hostio.inc.

For single transputer programs the channels are defined within the program, and
for multiprocessor programs the channels are placed on the link that is connected
to the host. The normal location for the connection to the host is link zero on
the root processor.

8.4.1 Using the simulator
The simulator tool isim provides access to the host file server in the same way

as a single processor program running on a board, with the following channel
placements: £s at 1ink0.in; ts at 1ink0.out.

8.5 Multiplexing processes to the host

The host file server is a single resource, connected to a process running on the
root transputer via a pair of 0CCam channels. This is illustrated in figure 8.1.

host transputer

process

Figure 8.1 Program input/output

If more than one process requires access to the host then the server must be
shared between a number of processes, ensuring that all processes are served
inturn. The simplest solution where a resource is used by more than one process
is to provide a multiplexor.

A multiplexor is a process which takes many inputs and connects them to a single
shared resource and ensures that communications from different processes do
not conflict.

Two routines that allow multiple processes to communicate with the host via the
host file server channels are provided in the hostio library. The routines are
called so.multiplexor and so.overlapped.multiplexor. Details of
the routines can be found in part 2, section 1.4.9.

72 TDS 275 02 March 1991

8.5 Multiplexing processes to the host 163

An example of a multiplexed system is shown in figure 8.2 and 0Cccam code
that would implement the system is listed in figure 8.3.

nost /

Figure 8.2 Multiplexing the host file server

Multiplexor processes can be chained together to produce any degree of multi-
plexing to the host. However, the host is a single, finite resource and unrestrained
multiplexing of processes should be avoided if possible.

8.5.1 Buffering processes to the host

It may sometimes be useful to pass data invisibly through another process, for
example when passing data to the server through intervening processes. The
hostio library routine so.buffer takes a pair of input and output channels and
passes data through unchanged.

8.5.2 Pipelining

If data has to pass through many processes before reaching the server efficiency
may be improved by allowing a data transfer to begin before the previous one
has completed its journey down the line of processes. This allows several data
transfers to be in progress simultaneously and is known as pipelining.

The routine so.overlapped.buffer can pipeline several buffers up to a
user-defined limit. A pipelined version of the multiplexor process called
so.overlapped.multiplexor performs the same function for multiplexed
processes.

72 TDS 275 02 March 1991

164 8 Access to host services

#INCLUDE "hostio.inc" =-- SP protocol declaration

PROC mux.example (CHAN OF SP fs, ts,
[1INT free.memory)

#USE "hostio.lib" =-- host i/o libraries

#USE "process0" -— user processes
#USE "processl"
#USE "process2"

SEQ
CHAN OF BOOL stop:
[3]CEAN OF SP from.process, to.process:

PAR
so.multiplexor(fs, ts, =-- server channels
from.process, to.process,
-- multiplexed channels
stop) —-- termination channel
SEQ
PAR -— run user processes in parallel
== sharing the iserver
process0 (to.process[0], from.process[0])
processl (to.process[1l], from.process[l])
process2 (to.process[2], from.process[2])
stop ! FALSE -- terminate multiplexor

so.exit (fs, ts, sps.success)

Figure 8.3 Multiplexing example

72 TDS 275 02 March 1991

9 Mixed language
programming

This chapter describes how to incorporate code written in other languages into
occam programs. It begins by outlining the various ways in which foreign lan-
guage code can be mixed with occam, describes briefly how to mix code at
the configuration level, and describes in detail the special facilities available for
importing C functions (in TCOFF) into occam programs.

9.1 Introduction

For many applications it is appropriate to write the software using more than
one programming language. For example, a particular algorithm may be better
expressed in a specific language or applications software may already exist in
particular languages. In either case a well defined mechanism for mixing lan-
guages within a system is desirable.

The occam programming model provides a clean and simple basis for mixing
languages. The model consists of independent parallel processes, communicat-
ing via channels, which can be distributed in any way to a network of transput-
ers. In accordance with this model, programs written in other languages can be
viewed as single, separately compiled processes that can be run in parallel with
each other, and with other 0ccam processes, on any transputer in the network.

In addition special facilities and library support are provided for calling C code
from occam. The system supports the calling of C functions by a compiler
pragma and a set of library functions which allow static and heap areas to be
initialised and their use terminated.

Code which has been generated by the TCOFF family of language compilers may
be mixed at configuration level, using the ANSI C toolset configurer iccont.
The ANSI C configuration system and language enables processes written in
different languages to be placed on the same processor or on a network of
processors. Further details of this configuration system is given in the ANSI C
Toolset User Manual.

The toolset also provides a special set of interfaces which allow foreign language
code to be incorporated into 0CCam programs as equivalent 0CCam processes
. This enables configuration using the occam configurer occon£; an example
is provided in the examples directory supplied with the toolset. The interface
code system may be used to support source code written for use with earlier
INMOS language compilers and toolsets. Further information on this subject is
provided as an appendix to the ANSI C Toolset User Manual.

72 TDS 275 02 March 1991

166 9 Mixed language programming

Mixed language programs can be debugged using the toolset debugger idebug,
with some restrictions.

It is also possible to call separately compiled occam procedures from other
languages. Since 0ccam code requires no elaborate run time environment, and
separately compiled procedures are re-entrant, the code for these procedures
can be shared by different processes running on the same transputer.

9.2 Importing C functions

Special facilities and library support exist for calling C functions from occam.
This allows existing, proven C code to be used in 0CCam programs, with certain
minor restrictions. The facilities comprise the oc compiler pragmas EXTERNAL
and TRANSLATE and four library routines which allow C code generated by the
ANSI C compiler ice to be incorporated. Section 9.3 lists equivalent occam
data types for all C types. In certain cases no true equivalent exists and an
alternative action is suggested.

Only C functions which do not require any server communication, i.e. those
linked with the reduced C runtime library, can be called from occam. In addi-
tion stack checking should not be enabled on any C function to be called from
occam.

Most C runtime environments automatically provide C programs and functions
with a static area (for holding static data and external variables) and a heap area
(for memory allocation). Since occam requires neither of these, the facilities
are provided separately by four routines in the 0ccam library callc. lib. The
routines provide the mechanisms for setting up and terminating C static and heap
areas from 0ccam so that suites of C functions may be called. Each C function
which uses static data needs to be able to find this area. In order to do this,
every C function takes, as its first parameter, a pointer to the start of the static
area.

Some simple C functions may not require static or heap areas and may be called
more easily without using the special library routines. When calling a C function
therefore, the first step is to decide whether static and heap areas are required.

9.2.1 Deciding whether a static area is required

For many C functions it may not be immediately obvious whether static or heap
is required (the heap area requires a previously set static area). For example,
some, but not all, library functions require static and heap areas but because it
would be difficult to distinguish those that do, a static and heap area should be
assumed whenever a library function is called.

72 TDS 275 02 March 1991

9.2 Importing C functions 167

Because of the difficulty in covering all types of functions, the following series
of rules is offered as a way of determining whether a function requires static
or heap. The rules ensures that no C function is called in the incorrect way,
even though static and heap areas may be assumed when they are not actually
required.

If the function uses static variables then static is required.
If the function accesses external variables static is required.

If the function uses any functions from the runtime library static and heap
is required.

Functions which fail all the above tests can be assumed not to require static or
heap, and can be called without using any of the static or heap library functions.
8.22 Functions which do not require static or heap

C functions which do not require static or heap can be called using the EXTERNAL
pragma. There are two possible cases based on whether or not the function re-
quires a global static base (gsb) pointer parameter.

Functions which are compiled normally expect gsb as the first parameter even
if they make no use of static. If there is no use made of the static area, gsb will
not be used but must still be passed as a dummy parameter.

9.23 Declaring the C function

In order for 0CcCam code to call an external function it must have a description
of the function. The EXTERNAL pragma is provided to create descriptors for
functions written in languages other than occam. The syntax of the pragma is
as follows:

#PRAGMA EXTERNAL "function declaration = workspace [, vectorspace]™

The optional parameter vectorspace is not required for C functions.

For example:

#PRAGMA EXTERNAL "INT cfunction (VAL INT gsb, INT argl, arg2)
= 50"

Note that gsb is declared as the first parameter. Workspace is a constant value
and represents the number of words of workspace required by the C function
(in the above example this was 50 words). Workspace must be large enough

72 TDS 275 02 March 1991

168 9 Mixed language programming

to accommodate the workspace of any sub-calls made by the C function. The
workspace requirement of a C function can be estimated as the number of words
required by any automatic variables, plus an additional four words for each func-
tion call. If the C function makes a call to the runtime library, workspace should
be increased by at least 150 words.

For example:

C function to be called:

int efunc(int argl, int arg2)

/* body of cfunc */
}

occam calling code:

#PRAGMA EXTERNAL "INT cfunc (VAL INT gsb, INT argl, arg2l) =
50"

PROC callc()
INT dummy.gsb, c.argl, c.arg2, result:

SEQ
dummy.gsb := 0 -- dummy.gsb has a null value
-- calculate c.argl and c.arg2
result := cfunc(dummy.gsb, c.argl, c.arg2)

-- rest of function

It is possible to remove the need for the dummy parameter altogether by com-
piling the C function without a static link parameter i.e. with the icc compiler
pragma IMS_nolink active.

For example:

C function to be called:

int efunc(int argl, int arg2);

#pragma IMS_nolink(cfunc)

int ecfunc(int argl, int arg2?)
/* body of cfunc */

}

72 TDS 275 02 March 1991

9.2 Importing C functions 169

occam calling code:

#PRAGMA EXTERNAL "INT cfunc(INT argl, arg2) = 50"
PROC callc()
INT c.argl, c.arg2, result:
SEQ
-- calculate c.argl and c.arg2

result := cfunc(c.argl, c.arg2)
-- rest of function

Translating C names

The TRANSLATE pragma can be used to convert C names to valid occam
names.

Some C names may contain invalid occam characters, for example, the under-
score. It is usually possible to ensure that the C function has an acceptable OC-
cam name but where this is not possible or desirable the TRANSLATE pragma
can be used to generate an occam alias.
The syntax is as follows:

#PRAGMA TRANSLATE occamname "Cname"
For example:

#PRAGMA TRANSLATE c.func "c_func”

TRANSLATE pragmas must precede any reference to their identifier and this
includes any identifier defined by an EXTERNAL pragma. For example:

#PRAGMA TRANSLATE c.routine "e_routine"
#PRAGMA EXTERNAL "PROC c.routine () = 100"

Linking

occam programs that call C functions must be linked with the compiled C func-
tion. For details of how to use the linker see chapter 19.

72 TDS 275 02 March 1991

170 9 Mixed language programming

9.2.4 Functions which require static and/or heap

For C functions which require static and/or heap the space must be set up in
the occam code before the function is called, and terminated when no longer
required. These operations are performed by procedures supplied in the ‘callc’
library callec. lib.

The static area

C static data is stored in a reserved area of memory called the static area which
must be set up by the system and initialised. Each C function then locates this
static area using a pointer to its base passed by the runtime system. This pointer
is called the global static base (gsb) and is implicit in C and therefore normally
hidden from the user. Because C functions expect to receive this parameter
it should be passed explicitly by the calling occam code. This means that a
call to a C function from occam will have one extra parameter compared to an
equivalent call from C. The exception to this is when the C function is compiled
with the IMS_nolink #PRAGMA, which causes the function to be compiled
without the global static base parameter.

The heap area

The heap area is that area of memory from which the C memory allocation
functions reserve their memory space. It is separate from the static area and
requires a static area to be previously allocated because information about the
heap is held in static variables.

The heap need not be set up if it is not required, but remember that it may be
used implicitly by a library call.

Callc library

The library callc.lib provides four 0CCam procedures for initialising static
and heap areas and terminating them after use. The routines are summarised
below.

Function Description

init.static Initialises an area of memory for use as the
C static area.

init.heap Initialises an area for use as the heap area.

terminate.static.use | Terminates static usage.
terminate.heap.use Terminates heap usage.

72 TDS 275 02 March 1991

9.2 Importing C functions 171

init.static
PROC init.static([]INT static.area, INT required.size, gsb)

init.static is used to set aside and initialise an area of memory for use as
a C static area. The static area reserved is an integer array which is declared in
the calling occam program.

Two integer values are returned:

required.size: The number of words of static space re-
quired.

gsb: A pointer to the base of the array which will
act as the global static base.

Note: the number of words of static space required is equivalent to the required
size of the integer array. One element of the integer array is equivalent to one
word of memory.

If an error occurs on initialising the static area the value MOSTPOS INT is re-
turned instead of the required size.

The procedure can be used to check the size of static area required by checking
the first return integer. For example:

INT required.size, gsb:
[STATIC.SIZE]INT static.area:

init.static(static.area, required.size, gsb)
IF
required.size > STATIC.SIZE
-- not enough space reserved
TRUE
-- array is big enough

Another possible way of using init.static is to reserve a large amount of
memory for use by the C function. To do this an initial call to init.static
would be made with an array size of zero to obtain the required size, followed by
a second call which would set up a segment of memory as the static area. The
rest of the memory could be used by the occam program for its own purposes,
perhaps to allocate the C heap. For example:

INT required.size, gsb:
[VERY .BIG.NUMBER] INT memory:

init.static([memory FROM 0 FOR 0], required.size, gsb)

72 TDS 275 02 March 1991

172 9 Mixed language programming

static.area IS [memory FROM 0 FOR required.size]:
memory.left IS [memory FROM required.size FOR
(VERY.BIG.NUMBER - required.size)]:
SEQ
init.static(static.area, required.size, gsb)
-- rest of program

init.heap

PROC init.heap (VAL INT gsb, []INT heap.area)

init.heap is used to set aside an area of memory for use as a C heap. The
first argument is the gsb pointer returned by init.static, which is required
because the memory allocation routines make use of static data.

Like the static area the heap area is declared as an integer array. This array
must be large enough to accommodate all calls to the C memory allocation
functions. The number of words of heap area required is equivalent to the size
of the integer array. One element of the integer array is equivalent to one word
of memory.

If the heap is used by a function before init.heap has been called the C
memory allocation functions will fail with their normal error returns.

terminate.static.use

PROC terminate.static.use (VAL INT gsb)
terminate.static.use should be called when the static area is no longer
required, usually when no further calls to C will be made. It provides a clean

way of ending the use of the C static area.

Once the static terminate procedure has been called the state of the static area
is undefined.

terminate.heap.use
PROC terminate.heap.use (VAL INT gsb)

terminate.heap.use should be called when the heap is no longer required.
It provides a clean way of terminating the use of the heap.

Once the heap terminate procedure has been called the state of the heap is
undefined.

terminate.heap.use must be called before terminating the static area be-

72 TDS 275 02 March 1991

9.2 Importing C functions 173

cause the heap is accessed using static variables.

9.25 Example of using the callc library

The following example illustrates how the callc library procedures can be used
to set up and terminate the static and heap areas for a C function.

C function to be called:

#include <stdlib.h>
static int *¢;

int c_subfunc(int x, int check)

{

int i;

if (check == 0)
{
c = (int *)malloc(x):
if (c == NULL)
return 1;
else
{
for (i=0; i < x / sizeof(int); i++)
c[i] = i;
}
}
else
{
for (i=0; i < x / sizeof(int); i++)
if (c[i] '= i)
return 1;
}

return 0;

Calling occam code:

#INCLUDE "hostio.inc"

#USE "hostio.lib"

#USE "callc.lib" -- the ‘calling C‘ functions.

-- we cannot use the name c_subfunc because it is illegal in
-- occam therefore we translate it into a legal occam name

#PRAGMA TRANSLATE csubfunc "c_subfunc"

72 TDS 275 02 March 1991

174 9 Mixed language programming

-- declare the C function as an occam descriptor. Note the
-- following:

-- 1. We use the translated name - csubfunc.

-- 2. We declare the gsb as the first parameter. This

e parameter is hidden in C.

-- 3. The parameter and return types are matched to those
o in C.

-- 4. The workspace requirement, in this case 200, is an
S overestimation.

#PRAGMA EXTERNAL "INT FUNCTION csubfunc (VAL INT gsb, x,
check) = 200"

PROC test (CHAN OF SP fs, ts, []INT freemem)
INT length, gsb, required.size:
—-- static.area and heap.area sizes are overestimations
VAL static.size IS 4000:
VAL heap.size IS 4000:
[static.size] INT static.area:
[heap.size]INT heap.area:
SEQ
-- set up static.area as the static area
init.static(static.area, required.size, gsb)
-- now check for error
IF
required.size > static.size
so.write.string.nl(fs, ts,
"error initialising static*n")
TRUE
INT fail:
SEQ
-=- set up the heap area. Note that gsb is the
-- first parameter
init.heap(gsb, heap.area)
—-- call the c¢ function. Note that the gsb is
—-— passed as the first parameter. This call
-- of csubfunc mallocs 2000 bytes and fills
-- this area with known wvalues.
fail := csubfunc(gsb, 2000, 0)
-- check for error
IF
fail = 0
SEQ
-- call csubfunc again but this time ask
-- it to check the area set up by the
-- previous call
fail := csubfunc(gsb, 2000, 1)
-- check for error

72 TDS 275 02 March 1991

9.2 Importing C functions 175

IF
fail = 0
so.write.string.nl (fs, ts,
"successful test*n")
TRUE
so.write.string.nl(fs, ts, "FAIL*n")
TRUE

-- the first call to csubfunc failed
so.write.string.nl(£fs, ts,
"malloc FAILED*n")

-- terminate use of heap cleanly
terminate.heap.use(gsb)
-=- terminate use of static cleanly
terminate.static.use(gsb)
so.exit (fs, ts, sps.success)

9.2.6 Linking the program

The occam program must be linked with the compiled C function, the callc
library, the reduced runtime C library, and with any other occam libraries it
uses. In the above example the set of files to be linked would be as follows:

callec.tco — compiled occam program

csubfunc.tco - compiled C function

calle.lib — calle library

hostio.lib —occam i/o library

libered.lib - C reduced runtime library

occama.lnk - linker indirect file, listing other libraries such as

compiler libraries required for the linking opera-
tion. (See chapter 19 for details).

The linker allows files to either be specified on the command line or listed in
an indirect file. Because there are several files required in this instance, it may
be easier to supply a linker indirect file. To do this create a text file called
callec.lnk, containing the following lines:

callc.tco
csubfunc.tco
callc.lib
hostio.lib
libcred.lib
#INCLUDE occama.lnk

72 TDS 275 02 March 1991

176 9 Mixed language programming

The correct linker command line (using the default processor T414 in HALT
mode) would be as follows:

ilink -f callec.lnk (UNIX)
ilink /£ callec.lnk (MS-DOS/VMS)

The main entry point of the program is assumed to be the first entry point en-
countered in the input list. Details of the operation of the linker can be found in
chapter 19.

9.3 Parameter passing

The following tables describe the calling conventions that must be followed when
passing parameters from OCCam programs to imported C processes. They list
the occam equivalents on 32 and 16 bit transputers for all C types. Where
there is no true equivalent the action to take is given.

72 TDS 275 02 March 1991

9.3 Parameter passing

177

Formal C parameter

Actual occam parameter

(32 bit)

(16 bit)

char
unsigned char

VAL BYTE

VAL BYTE

signed char

No direct equivalentt

No direct equivalentt

short
signed short

No direct equivalentt
(see Note 1)

VAL INT
VAL INT16

unsigned short

No direct equivalentt

No direct equivalentt

array (see Note 2) (see Note 2)
int VAL INT VAL INT
signed int VAL INT32 VAL INT16
enum

t There is no direct type equivalent in occam. Either recode the C program
or pass the parameter in another form.

Note 1: A C short on a 32 bit processor is stored in 32 bits with the upper
16 bits zeroed. In 0CcCam an INT16 on a 32 bit processor is also stored
as a 32 bit value, however, in this case the upper 16 bits are ignored and
not zeroed. Hence C short and 0Cccam INT16 are not directly equivalent.

Note 2: There are two cases to be considered when passing arrays from
occam to C:

(i) When all the dimensions are known, the array is passed directly e.g.
occam calling code:

[B]INT array:

cfunc(array)

called C code:

void cfunc(int array[8]):;

(i} When some dimensions are unspecified occam will pass the dimen-
sions as extra parameters following the array parameter. The C code must
be written to accept these parameters e.g. 0occam calling code:

[1INT array:
cfunc (array)

called C code:
void cfunc(int array [],

int arraysize);

72 TDS 275 02 March 1991

178

9 Mixed language programming

Formal C parameter

Actual occam parameter

(32 bit)

(16 bit)

unsigned int

No direct equivalentt

No direct equivalentt

long
signed long

VAL INT
VAL INT32

No direct equivalentt

unsigned long

No direct equivalentt

No direct equivalent}

unsigned char *

float VAL REAL32 No direct equivalentt
double No direct equivalentt No direct equivalentt
struct No direct equivalentt No direct equivalentt
union

char * BYTE BYTE

signed char *

No direct equivalentt

No direct equivalentt

short *
signed short *

INT16

INT16
INT

unsigned short *

No direct equivalentt

No direct equivalentt

int *
signed int *
enum *

INT
INT32

INT
INT16

unsigned int *

No direct equivalentt

No direct equivalentt

long *
signed long *

INT
INT32

INT32

unsigned long *

No direct equivalentt

No direct equivalentt

float * REAL32 REAL32

double * REALG4 REALG4

struct * No direct equivalentt No direct equivalentt
union *

channel *

CHAN

CHAN

t There is no direct type equivalent in occam. Either recode the C program
or pass the parameter in another form.

72 TDS 275 02

March 1991

9.3 Parameter passing

9.3.1 Return values

The following table outlines the conventions that must be followed when receiving

occam function return values in C.

C function type

occam function type

(32 bit)

(16 bit)

char
unsigned char

BYTE

BYTE

signed char

No direct equivalentf

No direct equivalentt

short
signed short

INT16

INT
INT16

unsigned short

No direct equivalentt

No direct equivalentt

int
signed int
enum

INT
INT32

INT
INT16

unsigned int

No direct equivalentt

No direct equivalentt

long
signed long

INT
INT32

INT32

unsigned long

No direct equivalentt

No direct equivalentt

float REAT32 REAL32

double REALG4 REALG4

struct No direct equivalentt No direct equivalentt
union

Any pointer type

No direct equivalentt

No direct equivalentt

1 There is no direct type equivalent in 0ccam. Either recode the C program
or return the value in another form.

9.3.2 Examples of passing parameters

The following examples shows a C function with a variety of formal parameters
along with the occam code which can call it. The code for 32 bit and 16 bit

transputers is given separately.

72 TDS 275 02

March 1991

180 9 Mixed language programming

The C function to be called on a 32 bit transputer is as follows:
int cfuncl (int parml);

#pragma IMS nolink(cfuncl) /* remove the gsb hidden
parameter */

void cprocl (char ¢, int i,
long 1, float £,
char *cp, short *sp,
int *ip, long *1p,
float *fp, double *dp,
int arrayl[8],
int array2[], int array2len);

#pragma IMS nolink (cprocl) /* remove the gsb hidden
parameter */

int cfuncl (int parml)
{

return parml * 10;
}

void cprocl (char ¢, int i,
long 1, float £,
char *cp, short *sp,
int *ip, long *1p,
float *fp, double *dp,
int arrayl[8],
int array2[], int array2len)

int j;

*cp = c;

*sp = (short)c;
*ip = i;

*1p = 1;

*fP = f;

*dp = (double)i;
for (j = 0; j < 8; j++)

arrayl[j] = 42;
for (j = 0; j < array2len; j++)
array2[j] = array2len;

72 TDS 275 02 March 1991

9.3 Parameter passing 181

The occam code to call the above C function on a 32 bit transputer is as follows:
#PRAGMA EXTERNAL "INT FUNCTION cfuncl (VAL INT parml) = 100"

#PRAGMA EXTERNAL "PROC cprocl (VAL BYTE c, VAL INT i, *
* VAL INT32 1, VAL REAL32 £, *
BYTE cp, INT16 sp, *
INT ip, INT32 1p, *
REAL32 fp, REAL64 dp, *
[8]INT arrayl, []INT array2) = 100"

* F * #*

BYTE ¢, cp:
INT i, ip, result:
INT16 sp:
INT32 1, 1p:
REAL32 £, fp:
REAL64 dp:
[8]INT arrayl:
[5]INT array2:
SEQ
result := cfuncl (i)

cprocl(c, i, 1, £, cp, sp, ip, lp, fp, dp, arrayl, array2)

72 TDS 275 02 March 1991

182 9 Mixed language programming

The C function to be called on a 16 bit transputer is as follows:
int cfuncl (int parml);

#pragma IMS nolink (cfuncl) /* remove the gsb hiddan
parameter */

void eprocl(char ¢, int i,
short s, char *cp,
short *sp, int *ip,
long *1p, float *fp,
double *dp, int arrayl[8],
int array2[], int array2len);

#pragma IMS nolink (cprocl) /* remove the gsb hidden
parameter */

int cfuncl (int parml)
{
return parml * 10;

}

void cprocl(char ¢, int i,
short s, char *cp,
short *sp, int *ip,
long *1lp, float *fp,
double *dp, int arrayl[8],
int array2[], int array2len)

int j;

*cp = c;

*Sp = s8;

*ip = i;

*1p = (long)i;

*fp = (float)i;

*dp = (double)i;

for (j = 0; j < 8; j++)
arrayl[j] = 42;

for (j = 0; j < array2len; j++)
array2[j] = array2len;

72 TDS 275 02 March 1991

9.3 Parameter passing

183

The 0ccam code to call the above C function on a 16 bit transputer is as follows:

#PRAGMA EXTERNAL "INT FUNCTION cfuncl (VAL INT parml) = 100"

#PRAGMA EXTERNAL "PROC cprocl (VAL BYTE ¢, VAL INT i, *

*

VAL INT16 s,
INT16 sp,

* ¥ * %

REAL64 dp, *
[B]INT arrayl,

BYTE ¢, cp:

INT i, ip, result:
INT16 s, sp:

INT32 1p:

REAL32 fp:

REAL64 dp:

[B]INT arrayl:
[5]INT array2:
SEQ

result := cfuncl (i)

BYTE cp, *
INT ip, *
INT32 1lp, REAL32 fp, *

[JINT array2) = 100"

cprocl(c, i, s, cp, sp, ip, 1lp, fp, dp, arrayl, array2)

72 TDS 275 02

March 1991

184

9

Mixed language programming

72 TDS 275 02

March 1991

10 Low level
programming

This chapter describes a number of features of the toolset 0ccam 2 compiler
which support low-level programming of transputers. These are as follows:

Allocation This allows a channel, a variable, an array or a port to be placed at
an absolute location in memory.

RETYPING channels and creating channel array constructors These facili-
ties enable channels to be manipulated.

Code insertion This allows sections of transputer machine code to be inserted
into 0ccam programs.

Dynamic code loading A set of library procedures is provided that allows an
occam program to read in a section of compiled code (from a file, for
example) and execute it.

Extraordinary use of links A set of library procedures is provided which allow
link communications which have not completed to be handled by timeout,
or be aborted by another part of the program.

Scheduling Using the predefined routine RESCHEDULE to reschedule processes.

Setting the error flag The transputer error flag can be explicitly set using the
predefined routine CAUSEERROR.

10.1 Allocation

Allocation is performed using the 0ccam PLACE statement, which is defined
formally as follows:

allocation = PLACE name AT expression :

The PLACE statement in occam allows a channel, a variable, an array, or
a input/output channel for a memory mapped device (port), to be placed at an
absolute location in memory. This feature may be used for a number of purposes,
for example:

e To map occam channels onto specific transputer links from within an

occam program. Channels mapped onto links in this way are known as
‘hard’ channels.

72 TDS 275 02 March 1991

186 10 Low level programming

« To map arrays onto particular hardware such as video RAM.

o To access devices (such as UARTSs or latches) mapped into the trans-
puter's address space.

10.1.1 The PLACE statement

Normally the PLACE statement should not be used to force critical arrays or
variables into on-chip RAM. The occam compiler allocates memory according
to the scheme outlined in part 2, appendix D, and cannot allow data to be placed
arbitrarily in memory. To make the best use of on-chip RAM use separate vector
space as described in section 4.7.

The address of a placed object is derived by treating the value of the expression
as a word offset into memory. In 0CCam addresses start at zero, while physical
machine addresses start at MOSTNEG INT (#80000000 on 32-bit transputers
and #8000 on 16-bit transputers). An 0CCam address can be considered as a
subscript to an INT vector mapped onto memory. Thus the following statement
would cause chan to be allocated address #80000004 on a 32-bit transputer:

PLACE chan AT 1:

Addresses are calculated in this way so that the transputer links can be accessed
using code that is independent of the word length. The links are mapped to
addresses 0, 1, 2...7.

Translation from a machine address to the equivalent 0CCam address PLACE
value can be achieved by the following declaration:

VAL occam.addr IS
(machine.addr>< (MOSTNEG INT)) >> w.adjust:

where: w.adjust is 1 for a 16-bit transputer and 2 for a 32-bit transputer.

All placed objects must be word aligned. If it is necessary to access a BYTE
object on an arbitrary boundary, or an INT1 6 object on an arbitrary 16-bit bound-
ary, the object must be an element of an array which is placed on a word ad-
dress below the required address. For example, to access a BYTE port called
io.register located at physical address #40000001 on a T414 the follow-
ing must be used:

[4]PORT OF BYTE io.regs.vec
PLACE io.regs.vec AT #30000000 :
io.register IS io.regs.vec|l]

Placement may be used on transputer boards to access board control functions

72 TDS 275 02 March 1991

10.1 Allocation 187

mapped into the transputer's address space. For example, on the IMS B0O04,
the subsystem control functions (Error, Reset and Analyse) are mapped into
the address space and can be accessed from occam as placed ports. The
following code will reset the subsystem on an IMS B004:

PROC reset.b004.subsystem()

VAL subsys.reset IS #20000000: -- address O
VAL subsys.error IS #20000000: -- address 0
VAL subsys.analyse IS #20000001: -- address 4

PORT OF BYTE reset, analyse, error:
PLACE reset AT subsys.reset:
PLACE analyse AT subsys.analyse:
PLACE error AT subsys.error:
VAL delay IS 78: -- 5 msec delay
TIMER clock:
INT time:
SEQ
-—- set reset and analyse low
analyse ! 0 (BYTE)
reset ! 0 (BYTE)

reset ! 1 (BYTE) == hold reset high
clock ? time

clock ? AFTER time PLUS delay

reset ! 0 (BYTE) -- reset subsystem

The error and analyse functions can be controlled from occam in a similar way.

10.1.2 Allocating specific workspace locations

A number of specialised transputer instructions require specific workspace plac-
ings. For example, the instructions POSTNORMSN, OUTBYTE, OUTWORD and
the disabling ALT instructions all use workspace location 0. To accommodate
this the compiler supports the following allocation:

PLACE name AT WORKSPACE n:
where: n is a constant integer. (See part 2, appendix D for syntax details).

This is used to ensure that a variable is allocated a particular position within a
procedure or function’s workspace. The compiler ensures that at least n words of
workspace are allocated, and that no other variables are placed at that address.
The compiler will warn if a variable PLACED AT WORKSPACE n is in scope
when its own workspace allocation requires to use that workspace location, or
when another is PLACED at the same location.

72 TDS 275 02 March 1991

188 10 Low level programming

For example on a T414, the POSTNORMSN instruction can be used to pack
a floating point number; it requires an exponent to be previously stored at
workspace offset 0. The following code may be used:

REAT32 FUNCTION pack (VAL INT guard, frac, exp,
sign)
REAL32 result :
VALOF
INT temp :
PLACE temp AT WORKSPACE 0 :
SEQ
temp := exp
ASM
LDAB guard, frac
NORM
POSTNORMSN
ROUNDSN
LDL sign
OR
ST result
RESULT result

(For the background on this example, see the Transputer instruction set — a
compiler writer’s guide, section 7.11.2). Use of the ASM construct is described
in section 10.3.1.

10.1.3 Allocating channels to links
When mapping channels to specific transputer links, the channel word is placed
at the specified address for scalar channels. Arrays of channels, however, are
mapped as arrays of pointers to channels :

PLACE scalar channel AT n:
places the channel word at that address.

PLACE array of channels AT n:
places the array of pointers at that address.
Note: that the current implementation of arrays of channels has changed from the
IMS D705/D605/D505 releases of the toolset. In the past they were implemented
as a pointer to an area of memory which held a number of contiguous channels.
The data type of a channel has been changed from ‘channel’ to ‘pointer to
channel’. This means that code compiled by IMS D705/D605/D505 toolsets

72 TDS 275 02 March 1991

10.1 Allocation . 189

cannot be called by code compiled with the current toolset, if channel arrays are
used.

The following two code fragments illustrate the placement of channels on links.

CHAN OF ANY in.link0, out.linkO :
CHAN OF ANY in.linkl, out.linkl :
CHAN OF ANY in.link2, out.link2 :
CHAN OF ANY in.link3, out.link3 :
CHAN OF ANY in.event

PLACE out.link0 AT link0.out:
PLACE in.1link0 AT 1link0.in:

PLACE out.linkl AT linkl.out:
PLACE in.linkl AT linkl.in:

PLACE out.link2 AT link2.out:
PLACE in.link2 AT link2.in:

PLACE out.link3 AT link3.out:
PLACE in.link3 AT link3.in:

PLACE in.event AT event.in:

or:

CHAN OF ANY out.link0, out.linkl, out.link2, out.link3

PLACE out.link0 AT link0.out

PLACE out.linkl AT linkl.out :

PLACE out.link2 AT link2.out :

PLACE out.link3 AT link3.out :

[4]CHAN OF ANY outlink IS [out.linkO, out.linkl,
out.link2, out.link3]

CHAN OF ANY in.link0, in.linkl, in.link2, in.link3

PLACE in.link0 AT link0.in :

PLACE in.linkl AT linkl.in :

PLACE in.link2 AT link2.in :

PLACE in.link3 AT link3.in :

[4]CEAN OF ANY inlink IS [in.linkO, in.linkl, in.link2,
in.link3]

Link addresses are defined in the include file 1inkaddr. inc that is supplied
with the toolset.

Although shown here as CHAN OF ANY channels you should use specific

occam channel protocols wherever possible to ensure that channels are prop-
erly checked at compile time.

72 TDS 275 02 March 1991

190 10 Low level programming

10.2 RETYPING channels and creating channel array con-
structors

Channels may be RETYPEd. This allows the user to change the protocol on a
channel in order to pass it as a parameter to another routine, for example:

PROTOCOL PROT32 IS INT32
PROC p (CHAN OF INT32 X)
X ! 99(INT32)

PROC gl (CHAN OF PROT32 y)

SEQ
P (¥) -- this is illegal
CHAN OF INT32 z RETYPES y :
p(z) -- this is legal

The facilities for RETYPEing channels should only be used by programmers who
understand the implementation of transputer channels, and the implications of
attempting to circumvent occam’s checking of channel usage. These facilities
may be useful for those programmers who are using occam at a very low level,
for example, writing loaders and other operating system type functions.

The current implementation of channels allows flexible use of channel arrays,
which are implemented as an array of pointers to channel words. This means,
for example, that it is possible to create an array of channels which map onto the
hard links in a different order than 0 to 3, by using channel array constructors.
For example:

CHAN OF ANY out.link0O, out.linkl, out.link2,
out.link3

PLACE out.link0 AT link0.out
PLACE out.linkl AT linkl.out
PLACE out.link2 AT link2.out
PLACE out.link3 AT link3.out
[4]CHAN OF ANY outlink IS [out.link3, out.linkl,
out.link2, out.link0] :

e ss se ws

A particular effect of this implementation is that it may be useful to retype chan-
nels and arrays of channels into integers, in order to give the programmer access
to these pointers. A programmer may set up an array of integers whose values
are the addresses of channel words, and then use these as addresses of chan-
nels, like so:

72 TDS 275 02 March 1991

10.2 RETYPING channels and creating channel array constructors 191

[n] INT =x=:
SEQ
... initialise elements of array x, then:

[n]CHAN OF protocol c RETYPES x:
SEQ
... then communicate on c[i]

This will use the contents of x[i] as the address of the channel word. Note:
channels set up in this way are not initialised automatically; you should initialise
the contents of the channel word to MOSTNEG INT yourself, unless the channel
word is mapped to a hard link.

Similarly channels may be retyped into pointers:

[n]CHAN OF protocel c
SEQ
VAL [n]INT x RETYPES c:
SEQ i = 0 FOR n
SEQ
so.write.string (fs, ts, "The address of the
channel word of c[")
so.write.int (fs, ts, i, 0)
so.write.string (fs, ts, "] is : ")
so.write.hex.int (£fs, ts, x[i], 8)
so.write.nl (fs, ts)

Note: retyping channels to pointers must be a VAL RETYPE. You may not
modify the values of the pointers.

Single channels may be RETYPED to and from INTs.

Channel retyping should not be used to create arrays of existing channels. Chan-
nel array constructors may be used for this:

PROC fancy.mux ([2]CHAN OF INT in, CHAN OF INT
spare, out)
[3]CHAN OF INT c IS [in[0], in[l], spare]
WHILE TRUE
ALT i = 0 FOR 3
INT data
c[i] ? data
out ! data

72 TDS 275 02 March 1991

192 10 Low level programming

10.3 Code insertion

This section describes the facilities provided by the occam 2 compiler code
insertion mechanism.

The code insertion mechanism enables the user to access the instruction set of
the transputer directly within the framework of an occam program. Symbolic
access to 0OCCam variable names is supported, as is automatic jump sizing.
More details on the instruction set may be found in ‘The transputer instruction
set: a compiler writer's guide’.

Code insertion may be employed to perform tasks which are not possible in
occam, or for particularly time-critical sections of a program. There are two
reasons, however, why code insertion should be avoided as a solution to prob-
lems which may, with some thought, be solved using occam.

The first and most important reason is that the validity of a system consisting
entirely of 0ccam can be checked by the compiler. The compiler can check
usage of channels, access to variables, communication protocols and range
violations, and a single code insert prevents the compiler from performing these
checks adequately. A second reason is that the transputer instruction set is
optimised for high level languages, particularly occam, and algorithms which
are simple to code and easy to debug in 0ccam may become difficult and
obscure when coded in the transputer instruction set directly.

10.3.1 Using the code insertion mechanism

Code insertions may be introduced by either the ASM or GUY constructs. This
section describes the use of the ASM construct. (Details of the syntax are given
in part 2, appendix D).

The GUY construct is maintained to provide compatibility with the IMS D705,
D605, D505 toolsets. Appendix B (in part 2) outlines the differences between
ASM and GUY constructs. It also describes the restrictions placed on the use of
the GUY construct by the current compiler.

The context of the ASM construct is determined, as with all occam constructs,
by the text indentation. The transputer instructions which follow the ASM must be
indented and there can only be one instruction per line. Lines may be terminated
by a comment, which is introduced by a double dash (‘--") as in occam. The
transputer instructions are upper case versions of the standard mnemonics listed
in ‘The transputer instruction set: a compiler writer's guide’.

Compiler options determine which instructions may be used within sections of
code insertions, in the unit being compiled. The default is to disallow all code

72 TDS 275 02 March 1991

10.3 Code insertion 193

inserts. If the ‘G’ option is used, then the instructions allowed are a restricted set
of instructions which are sufficient for time-critical sections of sequential code.
If the ‘W' option is used, then all transputer instructions are allowed. Since the
inclusion of some instructions may have an unexpected effect on the occam
program (for example, instructions which move the workspace pointer), instruc-
tions outside of the restricted set must be used with great care. Transputer
instructions in the restricted set are listed in part 2 appendix B.

ASM statements can contain any number of primary or secondary transputer
operations, or transputer pseudo-operations or labels.

In the transputer instruction set primary operations are direct instructions, pre-
fixing instructions, or the special indirect instruction opr. Primary operations are
always followed by an operand which can be any constant or constant expres-
sion. If additional p£ix or nfix instructions are required to encode large values
the ASM assembler automatically generates the required bytes.

Secondary operations are any transputer operation, that is, any instruction se-
lected using the opr instruction.

Pseudo-operations are more complex operations built up from sequences of
instructions. Like macros, they expand into one or more transputer instructions,
depending on their context and parameters.

For example, to perform a 1's complement addition we can write the following
occam:

INT carry, temp:

SEQ
carry, temp := LONGSUM (a, b, 0)
c := carry PLUS temp

However, if this occurs in a time-critical section of the program we might replace
it with:

ASM
LDABC a, b, 0
LSUM
SUM
ST ¢

which would avoid the storing and reloading of carry and temp.
Values in the range MOSTNEG INT to MOSTPOS INT may be used as
operands to all of the direct functions without explicit use of prefix and negative

prefix instructions. Access to non-local 0occam symbols is provided without
explicit indirection, if you use the pseudo-instructions ‘LD’, ‘LDAB’ efc.

72 TDS 275 02 March 1991

194

10 Low level programming

A more complex example, which sets an error if a value read from a channel is

not in a particular

INT a

range, takes advantage of both these facilities:

... other code
PROC get.and.check.index (CHAN OF INT c)

SEQ
c ?a
ASM
LDAB 512, a -- push value of free
-- variable onto stack
-- followed by 512
CCNT1 -=- if NOT (0 < a <= 512)

-- then set error

If there is a requirement for the code insertion to use some work space, then the
work space may be declared before the ASM construct, in which case, the work
space locations are accessed like any other occam symbol.

INT a
SEQ
INT
ASM
LD
ST

a -- push value in a onto stack
b -- pop value from stack into b
more code

10.3.2 Special names

The following special names are available as constants inside ASM expressions.

.WSSIZE

.VSPTR

Evaluates to the size of the current procedure’s workspace.
This will be the workspace offset of the return address, ex-
cept within a replicated PAR, where it will be the size of that
replication’s workspace requirement.

Evaluates to the workspace offset of the vector space pointer.

"When it is used inside a replicated PAR, it points to the vec-

.STATIC

72 TDS 275 02

tor space pointer for that branch only. A compile time error
is generated if there is no vector space pointer because no
vectors have been created.

Evaluates to the workspace offset of the static link. When it
is used inside a replicated PAR it points to the static link for
that branch only. A compile time error is generated if there is
no static link.

March 1991

10.4 Dynamic code loading 195

For example, to determine the return address of a procedure, the following could
be used: LDL .WSSIZE.

It is not checked that these names are used sensibly, for example, J.WSSIZE
is legal even though it has no useful effect.

10.3.3 Labels and jumps

To insert a label into the sequence of instructions, put the name of the label,
preceded by a colon, on a line of its own. When the label is used in an instruction,
the name is again preceded by a colon. For example:

ASM
... some instructions
:FRED
... some more instructions
CJ :FRED

Branches may only be made to a label defined within the same procedure or
function. The same label name may not be defined more than once within an
occam procedure.

10.3.4 Programming notes

1 Floating-point (fp) registers cannot be loaded directly; they must be loaded
or stored by first loading a pointer to the register into an integer register
and then using the appropriate floating-point instruction.

2 The operands to the load pseudo-ops must be small enough to fit in a
register and the operands to the store pseudo-ops must be word-sized
modifiable elements.

10.4 Dynamic code loading

The toolset compiler permits the dynamic loading and execution of code using
the procedures described in this section.

These procedures are provided automatically by the compiler and are not ref-
erenced by a #USE directive. The procedures allow you to write an 0occam
program that reads in a compiled occam procedure, and then calls it. The
called procedure may be compiled and linked separately from the calling pro-
gram and read in from a file. It is possible to pass parameters to the procedure,
which must have at least 3 formal parameters.

72 TDS 275 02 March 1991

196 10 Low level programming

(Note that if you wish to dynamically load occam FUNCTIONS, it is recom-
mended that you call the FUNCTION indirectly from an occam PROC, and use
non-VAL parameters to return the results to the calling environment).

The procedures for setting up parameters before the call and for making the
call are outlined in the table below, and described in the following sections, with
examples. Further information and examples of this technique can be found in
section 5.3.5 of The Transputer Applications Notebook — Systems and Perfor-
mance.

Procedure Parameter Specifiers

KERNEL.RUN VAL []BYTE code,

VAL INT entry.offset,
[1INT workspace,

VAL INT
no.of.parameters

LOAD.INPUT.CHANNEL INT here,
CHAN OF ANY in

LOAD.INPUT,CHANNEL.VECTOR | INT here,
[JCHAN OF ANY in

LOAD.OUTPUT .CHANNEL INT here,
CHAN OF ANY out

LOAD.QUTPUT .CHANNEL.VECTOR | INT here,
[]CHAN OF ANY out

LOAD.BYTE.VECTOR INT here,
VAL []BYTE bytes

The bootstrap tool icollect described in chapter 12, can produce code in a
format suitable for dynamic loading. The file format is described in chapter 12.

10.4.1 Calling code

The occam 2 compiler recognises calls of a procedure KERNEL . RUN with the
following parameters:

PROC KERNEL.RUN (VAL []BYTE code,
VAL INT entry.offset,
[1INT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer,
starting execution at the location code [entry.offset].

72 TDS 275 02 March 1991

10.4 Dynamic code loading 197

The code to be called must begin at a word-aligned address. To ensure proper
alignment either start the array at zero or realign the code on a word boundary
before passing it into the procedure.

The workspace buffer is used to hold the local data of the called procedure. For
details of the contents of the workspace buffer see figure 10.1. The required
size of this buffer and the code buffer must be derived from information in the
code file.

The parameters passed to the called procedure should be placed at the top of
the workspace buffer by the calling procedure before the call of KERNEL . RUN.
The call to KERNEL. RUN returns when the called procedure terminates. If the
called procedure requires a separate vector space, then another buffer of the
required size must be declared, and its address placed as the last parameter at
the top of workspace. As calls of KERNEL . RUN are handled specially by the
compiler it is necessary for no.of.parameters to be a constant known at
compile time and to have a value > 3.

HSIZE warkepace) - 1] ssocnpr B

vector space pointer
or last parameter

[no.of.parameters+2] INT

parameters Ioadedbby caller
must be > 3
1st parameter (23)
saved iptr saved by KERNEL . RUN

[ws.requirement] INT

workspace of
called procedure

workspace[0]

Figure 10.1 Workspace buffer
The workspace passed to KERNEL . RUN must be at least:
[ws.requirement + no.of.parameters + 2]INT
where ws.requirement is the size of workspace required, determined
when the called procedure was compiled, and .stored in the code file and

no.of.parameters includes the vector space pointer if it is required.

The parameters must be loaded before the call of KERNEL . RUN. The parameter

72 TDS 275 02 March 1991

198 10 Low level programming

corresponding to the first formal parameter of the procedure should be in the
word adjacent to the saved Iptr word, and the vector space pointer or the last
parameter should be adjacent to the top of workspace where the Wptxr word will
be saved.

Note: code developed with the current toolset will not be able to call code
compiled by IMS D705/D605/D505 toolsets, if channel arrays are used. See
section 10.1.3.

10.4.2 Loading parameters

There are a number of library procedures to set up parameters before the call.
These are:

LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)
The variable here is assigned the address of the input channel in.

LOAD.INPUT.CHANNEL.VECTOR (INT here,
[JCHAN OF ANY in)

The variable here is assigned the address of the base element of the
channel array in (i.e. the base of the array of pointers). Note this is a
change from the previous implementation of this procedure in the IMS
D705/D605/D505 toolsets which used to return the actual address of the
input channel array.

LOAD .QUTPUT.CHANNEL (INT here, CHAN OF ANY out)
The variable here is assigned the address of the output channel out.

LOAD .QUTPUT . CHANNEL , VECTOR (INT here,
[ICHAN OF ANY out)

The variable here is assigned the address of the base element of the
channel array out (i.e. the base of the array of pointers). Note this is
a change from the previous implementation of this procedure in the IMS
D705/D605/D505 toolsets which used to return the actual address of the
output channel array.

LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)

The variable here is assigned the address of the byte array bytes.

72 TDS 275 02 March 1991

10.4 Dynamic code loading 199

Note that when passing vector parameters, if the formal parameter of the PROC
called is unsized then the vector address must be followed by the number of
elements in the vector, for example:

LOAD.BYTE.VECTOR (param[0], buffer)
param[l] := SIZE buffer

Thus an unsized vector parameter requires 2 parameter slots. The size must be
in the units of the array (not in bytes, unless it is a byte vector, as above). For
multi-dimensional arrays, one parameter is needed for each unsized dimension,
in the order that the dimensions are declared.

All variables and arrays should be retyped to byte vectors before using
LOAD.BYTE.VECTOR to obtain their addresses, using a retype of the form:

[1BYTE b.vector RETYPES variable:

LOAD.BYTE.VECTOR should also be used to set up the address of the separate
vector space.

10.4.3 Examples

This section gives two examples of dynamic loading. The first is a simple exam-
ple showing how parameterless code can be input on a channel and loaded. The
second is a more complex example showing how to set up and pass parameters
into a dynamically loaded program.

Example 1: load from link and run

This is a simple procedure to load a (parameterless) code packet from a link and
run it. The type of the packet is given by the protocol:

PROTOCOL CODE.MESSAGE IS INT::[]BYTE; INT; INT

The code is sent first, as a counted array, followed by the entry offset and

72 TDS 275 02 March 1991

200 10 Low level programming

workspace size.

PROC run.code (CHAN OF CODE.MESSAGE input,
[]INT run.vector, []BYTE code.buffer)
VAL no.parameters IS 3 : —-- smallest allowed
INT code.length,entry.offset,work.space.size:
INT total.work.space.size:
SEQ
input ? code.length::code.buffer;
entry.offset; work.space.size
total.work.space.size :=
(work.space.size + no.parameters) + 2
[JINT work.space IS [run.vector FROM 0 FOR
total.work.space.size]
KERNEL.RUN (code.buffer, entry.offset,
work.space, no.parameters)

Example 2: system loader

This example shows how to set up parameters prior to running code loaded from
a file. It is assumed that the code requires use of a separate vector space.

Consider a process with an entry of the form:

PROC process (CHAN OF ANY fs, ts, []INT buffer,
VAL BOOL debugging, INT result)

The two channel parameters £s and ts handle output from and input to the
file server; the INT vector acts as a buffer. The two channels and the buffer
are the same parameters as are provided by the bootstrap code added by the
collector tool (chapter 12), and the example takes advantage of this. The
fourth parameter is a value parameter that will not be changed by the process,
so only the value needs to be passed. The final parameter is an INT that will
be changed by the process, and its address must be passed into the procedure.

The calling program is shown below. The program reserves 256 bytes for the
code that is to be read in; if you use this program make sure you modify this
value to suit the size of your own code.

PROC call.program (CHAN OF ANY fs, ts, []INT free.memory)

-=- Variables for holding code and entry and workspace
-- data read from file

[256]BYTE code:

INT code.length, entry.offset, work.space.size:

INT vector.space.size:

INT result: =-- Variable used by process

VAL debugging IS TRUE: -- Value param for process

72 TDS 275 02 March 1991

10.4 Dynamic code loading 201

VAL no.params IS 7: -- No. of parameter slots
-- Need 1 slot per parameter + 1 for the size of the
—-— array parameter + 1 for the vector space pointer

SEQ
Read in code and data about code

== Slice up memory vector for use by process
[JINT ws IS [free.memory FROM 0 FOR
(work.space.size PLUS 3) PLUS no.params]:
-- Reserve work space requirement for process
[1INT parameter IS [ws FROM work.space.size PLUS
1 FOR no.params]:
-- Reserve slot in ws for parameters
[1INT vs IS [free.memory FROM SIZE ws FOR
vector.space.size]:

—-—- Reserve vector space requirement for process

[IBYTE b.vs RETYPES vs:

-- Retype as a byte vector

== All vectors must be loaded as byte vectors.

[JINT buffer IS [free.memory FROM (SIZE ws) PLUS
(SIZE vs) FOR
(SIZE memory) MINUS ((SIZE ws)
PLUS (SIZE vs))]:

—-— Reserve remainder of memory for use

—— as process parameter buffer

[IBYTE b.buffer RETYPES buffer:

-- Retype as a byte vector

[IBYTE b.result RETYPES result:

-- All variables must be retyped as a byte vector

LOAD. INPUT.CHANNEL (parameter[0], f£fs)

LOAD.OUTPUT.CHANNEL (parameter[1], ts)

LOAD.BYTE.VECTOR (parameter[2], b.buffer)

parameter[3] := SIZE buffer

parameter[4] := INT debugging

—-- Store value parameter

LOAD.BYTE.VECTOR (parameter[5], b.result)

-- Load address of INT parameter

LOAD.BYTE.VECTOR (parameter[6], b.vs)

-- set pointer to vector space

KERNEL.RUN ([code FROM 0 FOR code.length],
entry.offset, ws, no.params)

-— Run the process

This example first declares the variables and constants required for the pro-
cess. The vector code should be of a size large enough to hold the code for
the process. The values of the variables code.length, entry.offset,

72 TDS 275 02 March 1991

202 10 Low level programming

work.space.size and vector.space.size are determined from the
data in the code file.

Next the vector £ree.memory is partitioned for use as the process’'s work
space, vector space and as the variable vector used by the process. All vectors
and variables used by the process must be retyped as byte vectors so that their
address can be determined by the predefined routine LOAD . BYTE . VECTCR.

The parameters for the process are then set up. The unsized vector buffer is
passed as an address followed the size of the vector, in integers. Note that the
size of buffer, not b.buffer, is used.

The partitioning of the free memory buffer is illustrated in figure 10.2.

Top of free memory

buffer

ws + vs

vector space

Wotz ws
| vector space address |
parameters

Iptr

workspace

Start of free memory

Figure 10.2 Partitioning of free memory

72 TDS 275 02 March 1991

10.5 Extraordinary use of links 203

10.5 Extraordinary use of links
Introduction

The transputer link architecture provides ease of use and compatibility across
the range of transputer products. It provides synchronised communication at the
message level which matches the occam model of communication.

In certain circumstances, such as communication between a development sys-
tem and a target system, it is desirable to use a transputer link even though the
synchronised message passing of 0ccam is not exactly what is required. Such
extraordinary use of transputer links is possible but requires careful programming
and the use of some special 0CcCcam procedures.

The use of these procedures is described in this chapter. To use them in a
compilation unit, the directive #USE "xlink.1lib" should be inserted at the
top of the source for that unit. For details of the procedures see part 2, section
1.9.

10.5.1 Clarification of requirements

As an example, consider a development system connected via a link to a target
system. The development system compiles and loads programs onto the target
and also provides the program executing in the target with access to facilities
such as a file store. Suppose the target halts (because of a bug) whilst it is
engaged in communication with the development system. The development
system then has to analyse the target system.

A problem will arise if the development system is written in ‘pure’ occam. It
is possible that when the target system halts, the development system is in the
middle of communicating on a link. As a result, the input or output process will not
terminate and the development system will be unable to continue. This problem
can occur even where an input occurs in an alternative construct together with a
timeout (as illustrated below). When the first byte of a message is received the
process performing the alternative is committed to input; the timer guard cannot
subsequently be selected. Hence, if insufficient data is transmitted the input will
not terminate.

ALT
TIME ? AFTER timeout

from.other.system ? message

It is important to note that the problem arises from the need to recover from the
communication failure. It is perfectly straightforward to detect the failure within

72 TDS 275 02 March 1991

204 10 Low level programming

‘pure’ occam and this is quite sufficient for implementing resilient systems with
multiple redundancy.

10.5.2 Programming concerns

The first concern of a designer is to understand how to recognise the occurrence
of a failure. This will depend on the system; for example, in some cases a timeout
may be appropriate, in others the failure may need to be signalled to another
process on a channel.

The second concern is to ensure that even if a communication fails, all input
processes and output processes will terminate. As this cannot be achieved
directly in occam, there are a number of library procedures which perform the
required function. These are described below.

The final concern is to be able to recover from the failure and to re-establish
communication on the link. This involves reinitialising the link hardware; again
there is a suitable library procedure to allow this to be performed.

10.5.3 Input and output procedures

There are four library procedures which implement input and output processes
which can be made to terminate even when there is a communication failure.
They will terminate either as the result of the communication completing, or as
the result of the failure of the communication being recognised. Two proce-
dures provide input and output where communication failure can be detected by
a simple timeout, the other two procedures provide input and output where the
failure of the communication is signalled to the procedure via a channel. The
procedures have a boolean variable as a parameter which is set TRUE if the pro-
cedure terminated as a result of communication failure being detected, and is set
FALSE otherwise. If the procedure does terminate as a result of communication
failure then the link channel can be reset.

All four library procedures take as parameters a link channel e {on which the
communication is to take place), a byte vector mess (which is the object of the
communication) and the boolean variable aborted. The choice of a byte vector
as the parameter to these procedures allows an object of any type to be passed
along the channel provided it is retyped first. Channel retyping (see section 10.2)
may be used to pass channels of any protocol to these procedures.

The two procedures for communication where failure is detected by a timeout
take a timer parameter TIME, and an absolute time t. The procedures treat the
communication as having failed when the time as measured by the timer TIME is
AFTER the specified time t. The names and the parameters of the procedures

72 TDS 275 02 March 1991

10.5 Extraordinary use of links 205

are as follows:

InputOrFail.t (CHAN OF ANY c, []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

OutputOrFail.t (CHAN OF ANY ¢, VAL []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

The other two procedures provide communication where failure cannot be de-
tected by a simple timeout. In this case failure must be signalled to the inputting
or outputting procedure via a message on the channel kill. The message is
of type INT. The names and parameters to the procedures are as follows:

InputOrFail.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill, BOOL aborted)

OutputOrFail.c (CHAN OF ANY ¢, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted)

10.5.4 Recovery from failure

To reuse a link after a communication failure has occurred it is necessary to
reinitialise the link hardware. This involves reinitialising both ends of both chan-
nels implemented by the link. Furthermore, the reinitialisation must be done after
all processes have stopped trying to communicate on the link. So, although the
InputOrFail and OutputOrFail procedures reset the link automatically
when they abort a transfer, it is necessary to use the fifth library procedure
Reinitialise(CHAN OF ANY c) after it is known that all activity on the
link has ceased.

The Reinitialise procedure must only be used to reinitialise a link channel
after communication has finished. If the procedure is applied to a link channel
which is being used for communication the transputer’s error flag will be set and
subsequent behaviour is undefined.

10.5.5 Example: a development system

For our example consider the development system described in section 10.5.1,
illustrated in figure 10.3.

The first step in the solution is to recognise that the development system knows

when a failure might occur, and hence knows when it might be necessary to
abort a communication.

72 TDS 275 02 March 1991

206 10 Low level programming

Development Target
System Link System

Figure 10.3 Development system

When the development system decides to reset the target it can send a message
to the interface process directing it to abort any transfers in progress. It can then
reset the target system (which resets the target end of the link) and reinitialise
the link.

The example program below could be that part of the development system which
runs when the target system starts executing and continues until the target is
reset and the link is reinitialised.

SEQ

CHAN OF ANY terminate.input, terminate.output :
PAR

interface process

monitor process

reset target system

Reinitialise(link.in)
Reinitialise(link.out)

The monitor process will output on both terminate. input and
terminate.output when it detects an error in the target system.

The interface process consists of two processes running in parallel; one process
outputs to the link, and the other inputs from the link. As the structures of the
two processes are similar only the output process is illustrated here.

If there were no need to consider the possibility of communication failure the
process might be:

WHILE active
SEQ
ALT
terminate.output ? any
active := FALSE

from.dev.system ? message
link.out ! message

This process will loop, forwarding input from from.dev.systemto
link.out, until it receives a message on terminate.output. However,

72 TDS 275 02 March 1991

10.6 Scheduling 207

if the target system halts without inputting after this process has attempted to
forward a message, the interface process will fail to terminate.

The following program overcomes this problem:

WHILE active
BOOL aborted :

SEQ
ALT
terminate.output ? any
active := FALSE
from.dev.system ? word
SEQ

OutputOrFail.c (link.out, message,
terminate.output, aborted)
active := NOT aborted

This program is always prepared to input from terminate.output, and is
always terminated by an input from terminate.output. There are two pos-
sible cases. The first is where a message is received by the input which then
sets active to FALSE. The second is where the output is aborted. In this case
the whole process is terminated because the variable aborted would then be
true.

10.6 Scheduling

Processes in 0ccam may have one of two priorities, high or low. A high priority
process will be executed in preference to a low priority process if both are active,
so that a low priority process will be interrupted. The PRI PAR construct is used
to assign priority to processes.

Scheduling in occam is achieved using the transputer’'s scheduler which main-
tains a list of processes. The following predefined procedure may be used to
affect scheduling:

« RESCHEDULE () —inserts enough instructions into the program to cause

the current process to be moved to the end of the current priority schedul-
ing queue, even if the current process is a ‘high priority’ process.

10.7 Setting the error flag

The transputer error flag can be explicitly set from software using the following
predefined procedure:

72 TDS 275 02 March 1991

208 10 Low level programming

e CAUSEERROR () —inserts a seterxr instruction into the program. If the
program is in STOP or UNIVERSAL mode it inserts a stopp instruction
as well.

CAUSEERROR (). This procedure is recognised automatically by the compiler
and does not need to be referenced by the #USE directive,

CAUSEERROR sets the transputer error flag no matter what the error mode of
the compilation. This is distinct from the 0occam primitive process STOP, which
only sets the flag if the compilation is in HALT mode.

If the program was loaded using the iserver ‘SE' option, the server terminates
when the error flag becomes set.

72 TDS 275 02 March 1991

11 EPROM programming

11.1 Introduction

INMOS EPROM software is designed so that programs can be developed and
tested using the INMOS toolset, and once they are working, can be placed in
ROM with only minor change.

Under development, software is booted onto a network from a link connecting
the network to the host computer. Then the software is prepared for a ROM,
which is attached to the root transputer in the network.

Figure 11.1 shows how a network of five transputers would be loaded from a
ROM accessed by the root transputer.

Boot from link

link
from ROM . ..|Root transputer|lin . Llin ;
buffer " oot from ROM Boot from link Boot from link

link

Boot from link

Figure 11.1 Loading a network from ROM

To prepare software to be booted from ROM, rather than to be booted from link,
the following two steps must be taken:

1 Give different options to the configurer and collector tools so that they
produce ROM-bootable code.

2 Run the ieprom tool to produce a file or set of files suitable for blowing
into EPROM.

Figures 11.2 and 11.3 illustrate the stages of preparing ROM-bootable software.
Figure 11.2 shows a single occam program, compiled and linked for a single
processor. Figure 11.3 shows a configured occam program, consisting of mul-
tiple linked units, connected together and allocated to processors as described

72 TDS 275 02 March 1991

210 11 EPROM programming

in an occam configuration file.

@—’icollect.

ieprom

o

THOW

—3= Input/output
- » References

Figure 11.2 Preparation of ROM-bootable software (single processor program)

ek

v
~ f”
N,

occonf icollact

\

-
\ -

ieprom

—» |nput/output

- - References

o
FhOW

Figure 11.3 Preparation of ROM-bootable software (configured program)

11.2 Processing configurations
The processing configuration used will depend on the type of program, the num-

ber of transputers available to run the code and whether the code is to run from
ROM or RAM. The following sections outline the possible configurations.

72 TDS 275 02 March 1991

11.2 Processing configurations 211

11.2.1 Single program, single processor, run from ROM

The application process is prepared as a single linked program. The application
program is then run in the processor, directly from ROM, using the RAM as the
data area for workspace and vector space.

11.2.2 Configured program, single processor, run from ROM

The application is described in a configuration file. It is then run on a single
processor, with the code in ROM, and the RAM is used as the data area.

11.2.3 Single program, single processor, run from RAM

The application is prepared as a single linked program. When booted from ROM,
the processor loads the code into RAM, and executes it there; the data area is
also in RAM.

11.2.4 Configured program, single processor, run from RAM

The application is described in a configuration file. When booted from ROM, the
processor loads the code for the program into RAM, and sets it running, with the
data area also in RAM.

11.2.5 Configured program, multiple processor, run from RAM

The application is described in a configuration file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from
ROM, the root processor loads its own code into RAM, and loads the rest of the
network via its links. Each processor then sets off its own processes, and the
application runs. (This is the configuration shown in figure 11.1).

11.2.6 Configured program, multiple processor, root run from ROM, rest
of network run from RAM

The application is described in a configuration file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from
ROM, the root processor loads the rest of the network via its links, and then
continues to run its own code from ROM.

72 TDS 275 02 March 1991

212 11 EPROM programming

11.3 The eprom tool: ieprom

The eprom tool ieprom takes the output of the collector, and produces a file
or set of files suitable for blowing into an EPROM. The following output formats
are supported:

- Binary

- Hex

- Intel hex format

- Intel extended hex format
- Motorola S-record format

ieprom supports the production of code files in block mode, which allows the
code to be placed in a set of different files. This is useful to program EPROMS
organised as separate byte-wide devices, or where the EPROM programming
device does not have enough memory to hold the entire image.

ieprom also supports the inclusion in the EPROM image of a memory config-
uration. Some 32-bit transputers have a configurable memory interface which
can be initialised from a fixed area in the ROM, when the transputer is reset.
A particular memory configuration can be specified to ieprom in a text file.
These files are known as memory configuration files and normally have the file
extension .mem. The format of these files, and the facility to edit them using
an interactive tool called iemit is described in chapter 16. The chapter also
describes icvemit, the tool which converts memory configuration files pro-
duced by previous toolsets i.e. the IMS D705/D605/D505 toolsets, to the format
supported by the current toolset.

ieprom is driven by a control file which normally has the file extension .epr.
A detailed description of ieprom and its control file is given in chapter 17.

11.4 Using the configurer and collector to produce ROM-
bootable code

To produce code suitable for running in ROM or RAM, the configurer and collector
tools must be specified with the appropriate command line options. The following
options are used for both tools:

¢ The ro option specifies that the code is to run in ROM.

¢ The ra option specifies that the code is to run in RAM.

In addition the NETWORK description in the configuration file should indicate:

72 TDS 275 02 March 1991

11.5 Summary of EPROM tool steps for different processing configurations213

e which processor is the root processor, by setting its root attribute to

TRUE

o the size of the ROM on that processor, by setting its romsize attribute
to the appropriate value, in bytes.

The collector will add the appropriate ROM bootstrap to the application code and
the output file will be given the extension .btr.

11.5 Summary of EPROM tool steps for different processing

configurations
Compile and | Configure Collect EPROM
link
Single program, Compile and | Not needed. Collect with the | Run EPROM
single processor, link program roand t tool to add
run from ROM. as a single options. memory interface
unit. (if necessary),
and produce
EPROM files.
Configured Compile and | Configure with | Collect with the | Run EPROM
program, link a set of the zo option. | ro option. tool to add
single processor, units. memory interface
run from ROM. (if necessary),
and produce
EPROM files.
Single program, Compile and Not needed Collect with the | Run EPROM
single processor, link program raand t tool to add
run from RAM. as a single options. memory interface
unit. (if necessary),
and produce
EPROM files.
Configured Compile and | Configure with | Collect with the | Run EPROM
program, link a set of the xa option. | ra option. tool to add
single processor, units. memory interface
run from RAM. (if necessary),
and produce
EPROM files.
Configured Compile and | Configure with | Collect with the | Run EPROM
program, link a set of the ra option. | ra option. tool to add
multiple processor, | units. memory interface
run from RAM., (if necessary),
and produce
EPROM files.
Configured Compile and | Configure with | Collect with the | Run EPROM
program, link a set of the ro option. | ro option. tool to add
multiple processor | units. memory interface

root runs from
ROM, rest of
network runs from
RAM.

(if necessary),
and produce
EPROM files.

72 TDS 275 02

March 1991

214 11 EPROM programming

72 TDS 275 02 March 1991

Tools

72 TDS 275 02 March 1991

216 Tools

72 TDS 275 02 March 1991

12 icollect — code
collector

This chapter describes the code collector tool icollect which generates
bootable or executable files for single and multitransputer programs, from linked
units and configuration data files respectively. The tool is also used to create
files for input to the EPROM programmer tool ieprom, and to generate files
that can be dynamically loaded by application source code.

12.1 Introduction

icollect generates bootable files for transputer programs and other exe-
cutable files in special formats. Bootable files are transputer executable files
containing distribution and bootstrap information which can be directly loaded
onto the hardware down a transputer link. The command line default is to gen-
erate a bootable file for a networked program from a configuration binary file;
single processor operation and special outputs are selected by specific com-
mand line options.

The bootable file contains all the information for loading and running the pro-
gram on a specific network of processors. The file includes data that controls
the distribution of code on the network and self-booting code for each proces-
sor. Bootable programs are self-distributing and self-starting and can be loaded
directly onto the transputer hardware using iserver.

For multitransputer programs the input file is a configuration data file created by
the configurer from a configuration description. The file describes the placement
of processes and channels on the processor network in a special format which
can be read by the collector.

For single transputer programs the input file is a single linked unit to which
bootstrap and system code is added for a single processor.

icollect can be directed to generate output files in a special format for pro-
cessing by the ieprom tool, and executable code with no bootstrap or system
process information, intended for dynamic loading by a supervisory program.

The main inputs and outputs of the collector tool for bootable programs are
shown below.

72 TDS 275 02 March 1991

218 12 icollect — code collector

Single processor program:

@—vicollect

A ,
s e
\map!

s

Multiple processor programs:

ku
icollect
a5
" map!

12.2 Running the code collector

The code collector is invoked using the following command line:
> icollect filename {options}

where: filename is a configuration data file created by occonf or a single linked
unit created by ilink.

options is a list of options from the following tables.

Options must be preceded by ‘' for UNIX based toolsets and */’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order on the command line.

Options must be separated by spaces.

72 TDS 275 02 March 1991

12.2 Running the code collector 219

If no arguments are given on the command line a help page is displayed giving
the command syntax.

Option Description

B filename Uses a user-defined bootstrap loader program in place of the
standard bootstrap. The program is specified by filename
and must conform to the rules described in appendix F. This
option can only be used with the “T" option (single processor
mode) and cannot be used with the ‘RA’ and ‘RO’ options.

C filename | Specifies a name for the debug data file. A filename must
be supplied and is used as given. Only valid when accom-
panied by the 'T’ option and invalid if used with the ‘D’ or 'K’
options. (See section 12.2.3).

D Disables the generation of the debug data file for single
transputer programs. Can only be used with the “T" option.
E Changes the setting of the Halt On Error flag. HALT mode

programs are converted to not stop when the error flag is
set, and non-HALT mode programs to stop when the error
flag is set. Can only be used with the T’ option.

I Displays progress information as the collector runs.

K Creates a single transputer file with no bootstrap code. Can
only be used with the ‘T’ option. If no file is specified the
output file is named after the input filename and given the
.rsc extension.

L Loads the tool onto the transputer board and terminates.

M memorysize | Specifies the memory size available (in bytes) on the root
processor for single transputer programs. Can only be used
with the “T" option. memorysize can be specified in Kilobytes
and Megabytes using the ‘K’ or ‘M’ suffixes. memorysize
may also be specified in hexadecimal using the ‘# or ‘$’
prefixes. This option results in a smaller amount of code
being produced. (See section 12.3).

O filename | Specifies the output file. A filename must be supplied and
is used as given. (See section 12.2.3).

P filename | Specifies a name for a memory map output file. A filename
must be supplied and is used as given.

RA Creates a file for processing by ieprom into a boot from
ROM file to run in RAM. If no output file is specified the file
is given the .btr extension. If the input is a configuration
binary file it must have been created using the occonf RA'
option.

72 TDS 275 02 March 1991

220 12 icollect — code collector

Option Description

RO Creates a file for processing by ieprom into a boot from ROM
file to run in ROM. If no output file is specified the file is given
the .btr extension. If the input is a configuration binary file it
must have been created using the occonf ‘RO’ option.

RS romsize | Specifies the size of ROM on the root processor. Only valid
when used with the ‘RA’ or ‘RO’ options. romsize can be spec-
ified in Kilobytes and Megabytes using the ‘K’ or ‘M’ suffixes or
it may be specified in hexadecimal using the ‘#’ or ‘$’ prefixes.
romsize must match the romsize specified in the configuration
description, if used.

S stacksize | Specifies the extra runtime stack size in words for single trans-
puter programs, written in languages such as C. Can only be
used with the “T" option. stacksize can be specified in Kilobytes
and Megabytes using the ‘K’ or ‘M’ suffixes. stacksize may also
be specified in hexadecimal using the ‘#' or ‘$’ prefixes.

T Creates a bootable file for a single transputer. The input file
specified on the command line must be a linked unit.

XM Directs the transputer-hosted version of the tool to be executed
so that they can be restarted without rebooting by the server.

X0 Directs the transputer-hosted version of the tool to be executed
once on the transputer board and then terminate.

¥ Disables interactive debugging with idebug and reduces the
amount of memory used. (See section 12.9). Can only be used
with the ‘T" option.

12.2.1 Examples of use

Example A (single processor mode):
UNIX based toolsets:
oc simple
ilink simple.tco hostio.lib -f occama.lnk

icollect simple.lku -t
iserver -se -sb simple.btl

72 TDS 275 02 March 1991

12.2 Running the code collector 221

MS-DOS and VMS based toolsets:

oc simple

ilink simple.tco hostio.lib /f occama.Ink
icollect simple.lku /t
iserver /se /sb simple.btl

Example B (configured program mode):

UNIX based toolsets:

oc simple

ilink simple.tco hostio.lib -f occama.ink
occonf simple.pgm

icollect simple.cfb

iserver -se -sb simple.btl

MS-DOS and VMS based toolsets:

oc simple

ilink simple.tco hostio.lib /f occama.lnk
occonf simple.pgm

icollect simple.cfb

iserver /se /sb simple.btl

12.2.2 Input files

The input file is either a configuration data file generated by occon£, or a linked
unit generated by 11ink. By default the collector assumes a configuration data
file; for linked units that are to be processed for single transputers the ‘T’ option
must be specified. Incorrect format input files generate an error message and
no output is produced.

12.2.3 Output files

The main output file is a binary file that can be loaded directly onto the transputer
hardware down a transputer link, whether for a single transputer or a multitrans-
puter network. This type of file is known as a boot from link program. If no
filename is specified the output file is named after the input file and given a
.btl extension. If an output filename is specified the file is given the specified
name.

Files created using the ‘RA’, ‘RO’, and ‘K’ options are given special extensions (if
no output filename is specified) which indicate the file type. File types created

72 TDS 275 02 March 1991

222 12 icollect — code collector

for each of the options are listed below.

Option | File created
K .rsc
RA .btr
RO .btr

A memory map file may also be generated by specifying the ‘P’ command line
option. The format of these files is described in section 12.5.

Debug data file

For single transputer programs only, the collector automatically generates a con-
figuration binary file for reading by the debugger. By default the filename stem
is taken from the output file and the ‘. c£b' extension is added. If the ‘C’ option
is specified the filename is used as supplied. Generation of the debug data file
can be disabled by specifying the ‘D’ option.

12.2.4 Small values of IBOARRDSIZE
When the “T" is used, very small values of IBOARDSIZE (including zero) are
detected at runtime and prevent the program from being run. IBOARDSIZE

must be > to the total memory requirements of the user program being executed.
See section 12.3.

12.3 Program interface

For programs which are to be loaded onto a single processor, the program
interface must conform to the appropriate format, according to whether both the
‘T" and ‘M’ options or just the ‘T’ is specified.

12.3.1 Interface used for ‘T’ option

In the case where the '"T” option is used, without specifying memorysize, the
program must conform to one of the following procedure declarations:

72 TDS 275 02 March 1991

12.3 Program interface 223

Note: that these procedure declarations are compatible with those required by
the IMS D705/D605/D505 releases of the toolset.

PROC program (CHAN OF SP from.link, to.link,
[1INT user.buffer)

PROC program (CHAN OF SP from.link, to.link,
[1INT user.buffer, stack.buffer)

where: from.link and to.link are the input and output channels respec-
tively of the transputer link down which the transputer was booted.

user.buffer is the free memory buffer.

stack.buffer is a buffer allocated at the base of memory by the
collector, whose size is determined by the 'S’ option. If the 'S’ option is
not specified when icollect is invoked this buffer will be of size zero.

The parameter user .buffer which is passed to the program, is a vector that
represents the amount of free memery that is still available on the board for use
by the program. That is, memory not already used by the program for its code
and workspace.

To calculate the actual memory available, the loader first reads the total memory
size from the host environment variable IBOARDSIZE. This communication with
the host is performed after the program has been loaded onto the transputer
board and before the program is started. The size of the free memory vector
passed to the program is given by IBOARDSIZE minus the combined program
code and workspace allocation.

The process which reads TBOARDSIZE requires, at present, approximately 3.5K
of memory. This process is executed and terminated before the user program
runs. The segment of memory used by the process is returned to the user
program as free memory. Therefore when the user program executes it will not
know whether the process was present or not.

When the ‘M’ option is used to specify the memory size, IBOARDSIZE is not

read and therefore the amount of memory required will be approximately 3.5K
less than that required in the above case.

Warning messages

While the loader is executing the initialisation process, described above, warning
messages may be obtained which have the following format:

72 TDS 275 02 March 1991

224 12 icollect — code collector

Warning -System initialisation - message
where: message can be one of the following:
Unable to read IBOARDSIZE

IBOARDSIZE environment variable is not defined correcitly.
lllegal format number number

The value specified for IBOARDSIZE is in the wrong format.
lllegal 16 bit memory size. Set to zero.

The value of IBOARDSIZE is greater than 64K but a 16 bit processor is
being used. The memory size has therefore been set to zero.

Negative memory size, set to zero

A negative value was specified for IBOARDSIZE, which has been set to
zero.

Unable to reset free memory

The loader cannot return the memory it has used, to the user.

12.3.2 Interface used for ‘T’ and ‘M’ options

In the case where both the “T" and the ‘M’ options are used, the program must
conform to one of the following two procedure declarations:

PROC program (CHAN OF any protocol from.link,
to.link, []INT user.buffer)

PROC program (CHAN OF any protocol from.link,
to.link, []INT user.buffer,
stack.buffer)

where: The channel protocol can take any valid type.

The other variables are as defined above.

72 TDS 275 02 March 1991

12.4 Memory allocation for single processor 225

12.4 Memory allocation for single processor

The memory allocation outlined in this section applies only to single processor
programs collected with the “T" option and without the ‘K’ option.

The default bootstrap loader attempts to optimise placement of the program’s,
and its own, code and workspace. The rules it uses are as follows:

1 If present stack.buffer is placed at the bottom of the memory. This is
followed in order by the workspace, code, vector space and free memory.

2 If the program uses a separate vector space the loader reserves a portion
of the program’s memory as vector space. From the size of this vector
space, the size of the program code, and the size of its workspace, the
loader determines the offset, from the start of memory of free (unused)
memory. This offset is used in conjunction with the environment variable
IBOARDSIZE to determine the amount of memory available to the pro-
gram, which is then passed as a vector parameter user .buffer for
the program to use.

Figure 12.1 shows the memory map of the loaded 0ccam code as created by
the default bootstrap loader.

-<— Top of memory

Free memory

Vector space
(only if needed)

Code

Workspace

stack.buffer workspace
(if requested)

<— Base of user memory (LoadStart)

Figure 12.1 Memory map for occam programs

A memory map file may be obtained by specifying the ‘B’ command line option.
The content of memory map files is described in section 12.5.

72 TDS 275 02 March 1991

226 12 icollect — code collector

12.4.1 Memory allocation for mixed language programs

For mixed language programs which include modules written, for example in C,
the bootstrap loader must also allocate memory for static data as well as stack
and heap areas.

When the collector 'S’ option is specified the stack.buffer placed at the
bottom of memory, is used for stack by the non-occam language modules.
When the ‘S’ option is not specified, a stack area is allocated at execution time,
at the top of free memory.

Areas for static data and heap are always allocated at execution time by the
non-Occam language’s runtime system. These areas are placed at the bottom
of free memory. The heap area grows upwards, towards the top of memory and
the stack grows downwards.

Figures 12.2 and 12.3 show the memory map layouts for mixed language code
for programs with and without the stack requirement specified by the user.

LoadStart is described in section 12.5.

? Top of memory

T Free memory
Heap
Static l

Vector space
(only if needed)

Code

occam workspace

stack.buffer
workspace

Base of user memory (LoadStart)

Figure 12.2 Memory map (mixed language) with stack specified

72 TDS 275 02 March 1991

12,5 The memory map file

227

Stack
\J
A

Heap

Static

Vector space
(only if needed)

Code

occam
workspace

T Top of memory

Free memory

Base of user memory (LoadStart)

Figure 12.3 Memory map (mixed language) without stack specified

12,5 The memory map file

A memory map file may be obtained by specifying the ‘' command line option,
followed by a filename. Such files contain the memory layout for each processor

in the network.

The file layout takes the form of a list of code and data to be placed on respective
processors. The right hand side of the file gives the start and end address

followed by the size of each block.

The file contains the following information:

¢ icollect version data

o For each processor the following details are given:

- Processor type

- Error mode (HALT or STOP)

— LoadStart (lowest user memory)

— For each process on this processor the following is listed:

+ Code, name of file, offset from start (decimal), start ad-

72 TDS 275 02

March 1991

228 12 icollect — code collector

dress and end address (hex), size (decimal), entry ad-
dress (if any, in Hex)

+ Workspace, start and end address (hex), size (decimal)
* Any other data requirements
« Boot path for the network - only present if program is configured
o Connectivity of the network - only present if program is configured
The absolute addresses are calculated using LoadStart, which is the base
of user memory. This varies for different processor types i.e the value of Load

Start for a T4 processor is different to that for a T8.

The memory from MemStart to LoadStart is used by the low level bootstraps
and their workspace.

The addresses allocated to various data items reflect the command line options
specified to the collector. Details of the memory map files for the following types
of files are given below:

o Single processor, boot from link programs targetted at a specific proces-
sor type.

o Single processor, boot from link programs targetted at processor class
TA or TB.

e Configured, boot from link programs.

» Boot from ROM (single and configured)

12.5.1 Single processor, boot from link

The first memory map described in this section is for a program which is to be
booted for a specific processor type.

The example shown in figure 12.4 was produced by the following command line:
icollect -t simple.lku -p simple.map -s 400 (UNIX)
icollect /t simple.lku /p simple.map /s 400 (MS-DOS/VMS)

where: simple.lku was produced by compiling and linking the example pro-
gram simple.occ for a T414 in the default halt on error mode.

72 TDS 275 02 March 1991

12.5 The memory map file 229

/’.‘:collect : INMOS toolset collector

Sun Version 2.0.25
Memory map for processor 0 T41l4
Load Start is 8000012C, HALT ON ERROR
LOW priority process 'Init.system’
Code from ’sysproc.lib’, file offset 6901
#800001BC #800003DC 544
Entry address #800001BE
Workspace #8000012C §8000019C 112
LOW priority process 'System.process.a’
Code from 'sysproc.lib’, file offset 19881
#80001498 #80001DF0 2392
Entry address #8000149A
Workspace #80001264 #8000147C 536
Vectorspace #B80001DF0 #BOOO1E70 512
HIGH priority process ‘System.process.b’
Code from ‘sysproc.lib’, file offset 29562
#80000410 #B8000046C 92
Entry address #80000411
Workspace #800003DC #BO0003F4 24
LOW priority USER process
Code from ‘simple.lku’, file offset 2
#800008B8 #80000ESC 1492
Entry address #800008B8
Workspace #8000076C #80000894 256
Extra stack #8000012C #8000076C 1600
Vectorspace #80000E8C §#80000FOC 512
Parameter data #8000108C #80001264 472

o

Figure 12.4 Memory map file for a single T414 processor program

LoadsStart is the lowest memory location of user memory. All other addresses
are calculated from LoadStart.

The file lists code and data segments to be placed on each processor. For each
process the workspace and vector space requirements are given together with
the entry point of the process. Notice that the first three processes listed are
non-user processes; this will always be the case for this type of program.

Because the program was compiled with vector space enabled and the collector
'S’ option was used, the user process requires the following areas of memory to
be allocated:

memory area

Start address

End address

Workspace
Extra stack
Vector space

#8000076C
#8000012C
#80000E8C

#80000824
#8000076C
#B0000FOC

(Normally you would only use the ‘S’ option for mixed language programs).

72 TDS 275 02

March 1991

230 12 icollect — code collector

The second memory map described in this section is for a program which is to
be booted for processor classed TA or TB.

The example shown in figure 12.5 was produced by the following command line:

icollect -t simple.lku -p simple.map (UNIX)
icollect /t simple.lku /p simple.map (MS-DOS/VMS)

where: simple. lku was produced by compiling and linking the example pro-
gram simple.ocec for class TA in the default halt on error mode.

/icolloct : INMOS toolset collector ‘\

Sun Version 2.0.25
Memory map for processor 0 TA
Load Start is UNKNOWN, HALT ON ERROR
LOW priority process ’'Init.system’
Code from ’'sysproc.lib’, file offset 6901
#AF8 #ple 544
Entry address #AFR
Workspace #90 #100 112
LOW priority process 'System.process.a’
Code from ’sysproc.lib’, file offset 15881
#F4c #1884 2392
Entry address #F4E
Workspace #Dl8 #F30 536
Vactorspace #18n4 #1924 512
HIGH priority process ‘System.process.b’
Code from ’sysproc.lib’, file offset 25562
#34 #90 92
Entry address #35
Workspace #0 #18 24
LOW priority USER process
Code from ‘simple.lku’, file offset 2
#14c #720 1492
Entry address #l4c
Workspace #0 #128 296
Vectorspace #720 #7180 512
Parameter data #920 #AFe 472

A

Figure 12.5 Memory map file for a single TA processor program

The memory layout is exactly the same as for the single processor case. How-
ever, LoadStart, from which the start and end addresses are calculated, can
only be calculated at runtime. This is because the value of MemStart cannot be
determined at collect time. The numbers given, in place of absolute addresses
are offsets from LoadStart.

72 TDS 275 02 March 1991

12.5 The memory map file 231

12.5.2 Configured program boot from link

The example shown in figure 12.6 was produced by the following command line:

icollect sortb3.pgm -p sorter.map (UNIX)
icollect sortb3.pgm /p sorter.map (MS-DOS/VMS)

where: sortb3.pgmis the configuration data file introduced in chapter 5 for the
example pipeline sorter program. The other components of the program
element.occ and inout .oce where compiled and linked for T414
processors in halt on error mode.

Note: only part of the file is shown in figure 12.6.

The Memory map for the configured program is similar to that produced for single
transputer programs except that it has two additional sections at the end of the
file. The boot path for the network lists processors in the order in which they are
to be booted. The connectivity for the network lists the link connections between
the processors.

72 TDS 275 02 March 1991

232 12

icollect — code collector

//’;;ollnct : INMOS toolset collector
Sun Version 2.0.25

Memory map for 'B003.t[0]’ processor 0 T41l4
Load Start is 8000012C, HALT ON ERROR

HIGH priority process ‘Init.system’
Cede from ’'sysproc.lib’, file offset 4969

#800001C0
Entry address #800001C2
Workspace #8000012¢C

HIGH priority process ‘System.process.b’
Code from ’sysproc.lib’, file offset 28822

#8000040C
Entry address #8000040D
Workspace #800003E0
LOW priority process ‘inout.p’
Code from ’‘element.lku’, file offset 2
#800011E4
Code from ‘inout.lku’, file offset 2
#800013B0
Code from 'sortb3.clu’, file offset 2
#80001A2C
Entry address #B80001A2E
Workspace #8000012C
Vectorspace #80001C00
Parameter data #80001ECE
Memory map for ‘B003.t[l]’ processor 1 T414
Load Start is 8000012C, HALT ON ERROR
HIGH priority process ’‘Init.system’
Code from ’sysproc.lib’, file offset 4969
#800001C0
Entry address #8oo0001c2
Workspace #8000012C
HIGH priority process ’System.process.b’
Parameter data #80001384

Boot path for network

Boot processor 0 down link 0 from HOST

Boot processor 1 down link 3 from processor 0 link 2
Boot processor 2 down link 3 from processor 1 link 2
Boot processor 3 down link 2 from processor 0 link 3

Connectivity for network

Connect HOST to processor 0 link 0

Connect processor 1 link 3 to processor 0 link 2
Connect processor 2 link 3 to processor 1 link 2
Connect processor 3 link 3 to processor 2 link 2
Connect processor 3 link 2 to processor 0 link 3

.

#B800003E0

#8000015C

#80000468

#800003F8

#800013B0
#80001A2C
#80001C00

#800011C0
#80001EC8

#800021C4

#800003E0

#8000019C

#80001650

ﬁ“\\

544

112

92

24

460
1660
468

4244
72

764

112

716

o

Figure 12.6 Memory map file for a single TA processor program

72 TDS 275 02

March 1991

12.5 The memory map file 233

12.5.3 Boot from ROM programs
There are four cases for this type of program:
» Single processor, boot from ROM, run in RAM
¢ Single processor, boot from ROM, run in ROM
» Configured program, boot from ROM, run in RAM
¢ Configured program, boot from ROM, run in ROM

The memory maps for each of these are summarised below.

Single processor, boot from ROM, run in RAM

The memory map for this case will have the same layout as the single processor,
boot from link programs.

Single processor, boot from ROM, run in ROM

It is not known at collect time where in memory the ROM is to be placed. There-
fore, the start and end addresses of the code segments are given as offsets
from the start of ROM, and are annotated as such. Items such as workspace
will have absolute addresses allocated, if the program is targetted at a specific
processor type.

An example for this case is given in figure 12.7. The example was produced by
the following command line:

icollect -t -ro -rs 8k simple.lku -p simple.map (UNIX)
icollect /t /ro /rs 8k simple.lku /p simple.map (MS-DOS/VMS)

where: simple.lku was produced by compiling and linking the example pro-
gram simple.occ for a T414 in the default halt on error mode.

72 TDS 275 02 March 1991

234 12 icollect — code collector

\

/h:ull-ct : INMOS toolset collaector
Sun Version 2.0.25

Memory map for processor 0 (Booting and running in ROM)T414
Load Start is 80000188, HALT ON ERROR
LOW priority process 'Init.system’
Code from ’‘sysproc.lib’, file offset 6901

ROM OFFSET #BOO #D20 544
ROM entry offset #B02
Workspace #80000708 #80000778 112

HIGH priority process ’System.process.b’
Code from ’‘sysproc.lib’, file offset 29562

ROM OFFSET #An4 #B00O 92
ROM entry offset #ARS
Workspace #800006D4 #800006EC 24

LOW priority USER process
Code from ‘simple.lku’, file offset 2

ROM OFFSET #4D0 #AR4 1452
ROM entry offset #4D0
Workspace #80000188 #800002B0 296
Vectorspace #800002D4 #80000354 812
&’azmtet data #80000580 #800006D4 340 /

Figure 12.7 Memory map file for a single processor program run in ROM
Configured program, boot from ROM, run in RAM

The layout of the memory map for this case will be the same as that for the boot
from link configured program.

Configured program, boot from ROM, run in ROM

For this case the root processor will shown in the same format as the single
processor case, run in ROM. Some memory locations being expressed as offsets
from the beginning of ROM.

For the other processors in the network will appear as the boot from link case.

12.6 Non-bootable files

Files created with the ‘K’ option are non-bootable files which can be dynamically
loaded by a program or manipulated at runtime.

Non-bootable files consist essentially of program code preceded by a number
of words of runtime data. The sequence of data and code blocks in the file is
summarised in the following table. Descriptions of the data items immediately
relating to the program block are given after the table.

72 TDS 275 02 March 1991

12.7 Boot-from-ROM options 235

Type Data Unit
INT32 Interface descriptor size bytes
[1BYTE Interface descriptor -
INT32 Compiler id size bytes
[1BYTE Compiler id -
INT32 Target processor type -
INT32 Version number -
INT32 Program scalar workspace requirement | words
INT32 Program vector workspace requirement | words
INT32 Static size words
INT32 Program entry point offset bytes
INT32 Program code size bytes
[1BYTE Program code block -

Target The processor type or transputer class for which the

program was compiled.

Version The format version number of the file. This can be 10
or 11 in the TCOFF system. For programs compiled
with oc it will always be 10 which indicates no static
parameter is present. A value of 11, indicates the pres-
ence of a static data parameter and is used to identify
code written using other INMOS language toolsets.

Scalar workspace Specifies the size of the workspace required for the
linked program’s runtime stack.

Vector workspace Specifies the size of the workspace required for the
linked program’s vector (array) data.

Static size Specifies the size of the static area.

Entry point offset Indicates the offset in bytes of the program entry point
from the base of the code block.

Code size Indicates the size of the program code in bytes.
Code The program code.

12.7 Boot-from-ROM options

The boot-from-ROM options ‘RA’ and ‘RO’ produce code that can be loaded into
EPROM using the ieprom tool. Both options apply only to code running on the
root transputer of a network; processors on the network connected to the root

72 TDS 275 02 March 1991

236 12 icollect — code collector

transputer are booted from the root transputer links.

‘RA’ generates code which is executed from RAM. The code is copied from ROM
into RAM at runtime. ‘RO’ generates code which is directly executed from ROM.

RAM executable code can be used for applications which are to be executed
from fast RAM, and for code which may be user-modified. ROM executable
code requires no RAM for code and can be used to create a truly embedded
system.

Configured programs for loading into ROM must have been created using the

same configurer option (‘RO’ or ‘RA’ as appropriate) that is supplied to the col-
lector.

12.8 Alternative bootstrap loaders

If not otherwise specified, icollect uses the standard INMOS bootstraps. The
correct code for the application program is chosen from a library of bootstraps
compiled for different error modes.

The collector can be directed to use other bootstrap loader programs by spec-
ifying the ‘B’ option. The option directs the collector to append a user-defined
loader program in place of the standard bootstrap loading sequence.
User-defined bootstraps must be created according to certain rules, illustrated
by the standard INMOS bootstrap which is listed in appendix F along with the

standard Network Loader. The listing is fully commented and can be used as a
template to design and code your own bootstrap sequence.

12.9 Use of the icollect ‘Y’ option
The collector option ‘Y’ has two effects on the program being built:

|t disables interactive debugging of the program.

o It reduces the amount of memory used.
For programs compiled and linked for a specific transputer type, this option will
cause icollect to produce a program that uses less memory. However,
programs compiled and linked for transputer classes ‘TA’ or ‘TB' will not build

when this option is used.

The effects of disabling interactive debugging are described in section 4.5.

72 TDS 275 02 March 1991

1210 Error messages 237

The disabling 'Y’ option may only be used in conjunction with the ‘T’ option and
will be ignored if specified for a configured program.

12.10 Error messages

This section lists error messages generated by icollect. The messages are
listed under severity headings in alphabetical order, omitting the introductory
information (error severity and filename data).

icollect generates errors of severities Warning and Serious. Serious error
cause the tool to terminate without producing any output.

12.10.1 Warnings

The following messages are prefixed with Warning-". They are only generated
when the “T” option is used (single processor mode).

Extra disable option on command line ignored

The user has configured the program with interactive debugging disabled
and has specified the ‘¥’ option to the collector.

Flip error mode ignored with user bootstrap

The ‘E' option is ignored when a user-defined bootstrap is specified since
the collector will only accept a single linked unit as a bootstrap.

Program configured with interactive debugging enabled, option ignored
The user has configured the program with interactive debugging and has
specified the 'Y’ option to the collector. This ‘Y’ option is ignored and the
boot file is built.

Strange board size for sixteen bit processor : Setting to zero
The memory size specified exceeds the addressing capacity of a 16 bit

processor (64 Kbytes). The collector uses a memory size of zero for the
rest of the build.

72 TDS 275 02 March 1991

238 12 icollect — code collector

12.10.2 Serious errors
The following errors are prefixed with ‘Serious=-'".
Address space for target processor exhausted

The address space required by the program is greater than 64Kbytes,
the maximum addressable space on a 16-bit processor.

Bootstrap file already specified

More than one bootstrap file was specified. Only one file is allowed.
Bootstrap filename too long

The maximum length allowed for the bootstrap filename is 255 characters.
Bootstrap is greater than 255 byte in library file

The library bootstrap is too large. This should only occur if the library file
is invalid or corrupt.

Cannot have both rom types

‘RA' and ‘RO’ options are mutually exclusive and cannot both be specified
on the same command line.

Cannot have configured and memory size

The memory size option is incompatible with building a bootable program
for a configuration binary file.

Cannot have configured and non bootable file

The collector cannot generate both a network loadable file and a non-
bootable file simultaneously for the same program.

Cannot have rom and non bootable file

The collector cannot generate both a ROM-loadable file and a non-
bootable file simultaneously for the same program.

72 TDS 275 02 March 1991

12.10 Error messages 239

Cannot open file filename
Host file system error. The file specified cannot be opened.

Cannot patch parameter data for processor class
The user has specified the ‘¥’ option with a linked unit for a processor
class. The collector cannot initialise some of the data without a linked
unit for a specific processor type.

Command line parsing error at string
Unrecognised command line option.

Debug file already specified
More than one debug file was specified. Specify one only.

Dynamic memory allocation failure

Memory allocation error. The collector cannot allocate the required amount
of memory for its internal data structures.

Error in writing to debug file
Host file system error. The debug file could not be written. This mes-
sage will only appear if the collector is invoked with the “T" option (single
processor mode).

Expected end tag found not present in .cfb file
A specific end tag is missing in the configuration binary file. Either the
file is corrupted or the versions of icollect and occonf used are
incompatible.

lllegal tag found in .cfb file
Incorrect format configuration binary file, recognised as an illegal tag.

Either the file is corrupted or the versions of icollect and occonf
used are incompatible.

72 TDS 275 02 March 1991

240 12 icollect — code collector

lllegal language type found in input file
Source language used to create the file is not supported by the collector.
Less likely, but possible, is that the file was created using an incompatible
(possibly earlier) version of a tool.

lllegal process type

Unrecognised process type. Either the file has been corrupted or the
versions of icollect and occonf used are incompatible.

lllegal processor type

Unrecognised processor type. Either the file has been corrupted or
icollect and occonf are incompatible.

lllegal tag found in input file : filename
Incorrect format input file. The most likely reason for this error is that an
incorrect file has been specified. Other less likely but possible explana-
tions are that the file was created using an earlier or incompatible version
of one of the tools, or that the file has become corrupted.

Input file already specified
More than one input file specified on the command line.

Input file has not been linked filename
The collector accepts only linked files, either directly when using single
processor operation, or indirectly via entries in the configuration binary
fle. This message can be generated if the file was created using a
previous version of a tool, or if the file is corrupt, or by the configurer
using different files to the ones the collector has found.

Input file is of incorrect type : filename
If the “T* option is specified (single processor program) the input file must
be a single linked unit (. 1ku type). If the “T* option has not been specified
the input file must be a configuration binary file (.c£b type).

Input filename too long

The maximum length allowed for the input filename is 256 characters.

72 TDS 275 02 March 1991

12.10 Error messages 241

Linked unit file in cfb and linked unit in input file found do not match :
filename

The linked file specified in the configuration binary and the one found by
the collector are not the same file.

Linked unit module not found in : filename

The required library module is missing or has been corrupted. This mes-
sage is generated when an incorrect version of the library is installed.

Memory size already specified
Memory size must be specified once only.
Memory size string invalid

Memory size must be given in decimal (with optional K or M suffix) or
hex. Hex numbers must be introduced by ‘#’ or ‘$’.

Memory size string too long
Specified memory size is too large i.e. it is greater than 8 digits.

More than one parameter statements
The collector expects only one parameter statement per processor. Ei-
ther the file has been corrupted or the versions of icollect and
occonf used are incompatible.

No debug and debug output file specified in command line

Options ‘D’ (disable debug) and ‘C’ (debug filename) cannot be used
together.

No input file specified

One, and only one, input file must be specified on the command line.
No parameter descriptor present in input file : filename

The formal parameter descriptor (to the user program) in the input file

is not present. This message will only appear if the collector is invoked
with the ‘T* option (single processor mode).

72 TDS 275 02 March 1991

242 12 icollect — code collector

Output file already specified
More than one output file was specified. Specify only one.
Output filename too long
The maximum length allowed for the output filename is 256 characters.
Parameter descriptor error in input file : filename
The formal parameter descriptor (to the user program) in the input file is
not of the correct form, indicating that the process interface is not one
recognised by the collector. (See section 12.3). This message will only
appear if the collector is invoked with the “T* option (single processor
mode).
Print map file already specified
More than one print map file was specified. Specify one only.

Program configured for boot from ROM command line is boot from link

The specified configuration binary file was created for either ROM or
RAM, and neither has been specified to icollect.

Program configured for running in RA mode command line is RO mode
Wrong mode specified, or incorrect option given to occonf when the
specified configuration binary file was created. RO and RA modes are
mutually exclusive.

Program configured for running in RO mode command line is RA mode
Wrong mode specified, or incorrect option given to occonf when the
specified configuration binary file was created. RA and RO modes are
mutually exclusive.

Rom size already specified
ROM size must be specified once only.

Rom size in input file and command line do not match

The ROM size specified on the command line is not equal to that specified
to occonf when the input file was created.

72 TDS 275 02 March 1991

12,10 Error messages 243

Rom size not specified

A ROM size must be specified because the input file is configured for
loading into ROM.

Rom size string invalid
llegal ROM size specification. ROM size must be given in decimal (with
an optional K or M suffix) or as Hex. Hex numbers must be introduced
by ‘# or‘$'.

Rom size string too long
ROM size specified was too large.

Stack size already specified
Stack size must be specified once only.

Stack size string invalid

Stack size must be given in decimal (with optional K or M suffix) or hex.
Hex numbers must be introduced by ‘#' or ‘$".

Stack size string too long
Specified stack size was too large i.e. greater than 8 digits.

Strange function or attribute for linked unit in : filename
The collector has found an unfamiliar value in the input file. Either an old
version of a tool was used in the creation of the input file, or the input file
has been corrupted.

System error
Host system error has occurred, probably when accessing a file. This

message may be generated when a file is read and its contents seem to
have changed.

72 TDS 275 02 March 1991

244 12 icollect — code collector

Unexpected end of file : filename
One of the files specified in the configuration binary has ended prema-
turely. filename identifies the offending file. If the message ‘Suspect
corrupted file' is substituted for filename then the file is corrupted.

User bootstrap not allowed when program is configured

User defined bootstrap loaders can only be used with single processor
programs.

User bootstrap not allowed with rom option
User defined bootstrap loaders cannot be used with ROM-loadable code.
User bootstrap type does not match that of linked unit

Either the target processor type or the error mode of the bootstrap code
does not match that of the input file.

72 TDS 275 02 March 1991

13 icvlink — TCOFF
convertor

This chapter describes the file format convertor tool icvlink which converts
object files from Linker File Format (LFF) to Transputer Common Object File
Format (TCOFF). The chapter begins with a short introduction to the tool and
then describes how it is used. The chapter ends with a list of error messages
which may be generated by icvlink.

13.1 Introduction

Earlier compilers and INMOS toolsets targetted at the transputer produced ob-
ject files in LFF. Examples of such products are the 3L and INMOS Parallel C,
and FORTRAN compilers and the D705/D605/D505 releases of the occam 2
compiler.

All object files produced by the latest INMOS Toolsets are generated in a format
known as Transputer Common Object File Format (TCOFF). Input files for the
linker, librarian, and lister tools, supplied with these toolsets, must be in TCOFF.

icvlink enables code compiled in LFF to be used with later versions of the
tools without needing to recompile. In particular it enables existing software to
make use of the new configuration tools supplied with the current toolsets.

The conversion to TCOFF may take place at different stages in the develop-
ment process depending on the user's requirements. Figures 13.1 to 13.3 il-
lustrate three different approaches to using icvlink. Nofice that in all three
approaches the conversion is performed before the configuration stage.

In figure 13.1, compiled object and library modules are processed by the con-
vertor and then linked using the current toolset linker i1ink. Converted library
modules have to be processed by the current toolset librarian 11ibr in order
to create TCOFF library modules, see section 13.2.2.

Figure 13.2 illustrates how existing compilation and library modules may be linked
using a previous version of the linker to produce a linked object file in LFF. This
file may then be converted to TCOFF and the current toolset linker 11ink used
to create a linked object file in TCOFF.

Figure 13.3 illustrates an extension to the second approach, where the TCOFF

file produced by the conversion is linked with modules compiled by the current
toolset compiler.

72 TDS 275 02 March 1991

246 13 ievlink — TCOFF convertor

The shaded symbols, in the figures, represent both i/o files in LFF format and
previous issues of particular tools. Note: where txx has been used it would be
equally valid to use .bin (see section 13.2 below).

-a- ievlink —l-—- ilibr —-—-l
—-— icvlink —-@ ilink ——@—-— occonf

Figure 13.1 Converting compilation and library modules

. —=icvlink —!- ilink Jku J—= occonf

Figure 13.2 Converting linked object module

. : —-icvlink 1

ilink Jku)] occonf

®

Jlib

Figure 13.3 Conversion followed by linking with new code

When occam or C source code is available it is recommended that the source
code is recompiled using the compiler supplied with this toolset rather than using
ievlink. If, however, the source code is not available or recompilation is likely
to be difficult, then icvlink should be used, following one of the approaches
outlined above.

Programs which have been converted should in general be kept separate from
programs developed with the current toolset. This is because of differences in
the supplied libraries and in the implementation of the different versions of the

72 TDS 275 02 March 1991

13.2 Running the format convertor 247

compilers and toolsets.

For occam programs the calling conventions for arrays of channels have changed
for the new toolset. This will cause problems if you attempt to pass (as a param-
eter) a channel array from a module compiled with the current toolset compiler
to a converted module or vice versa. The convertor will warn the user of any
arrays of channels found in a module and will report which routines they are
found in. It will also embed a warning message in the actual module, which will
be displayed during the linking process.

13.2 Running the format convertor
The format convertor operates on a single input file. This file may be a single

module or a library. The operation of the format convertor in terms of standard
extensions is shown below.

icvlink

Note: The file extensions of the input files, pertain to default file extensions used
by previous issues of INMOS toolsets (e.g. the IMS D705/D605/D505 and IMS
D511A/D611A/D711D products), where:

.1ib is the extension of a library file.
.txx is the extension of a compiled occam file.
. cxx is the extension of a linked unit.

.bin is the extension of a compiled C or FORTRAN file.

To invoke the file format convertor use the following command line:
B icvlink filename {options}

where: filename is the name of the file to be converted.

options is a list of options given in table 13.1.

72 TDS 275 02 March 1991

248 13 icvlink — TCOFF convertor

Options must be preceded by ‘~' for UNIX based toolsets and /" for
VMS and MS-DOS based toolsets.

Options may be entered in upper or lower case and can be given in
any order.

Options must be separated by spaces.

Option Description

D Forces a TA module to be converted into both a new TA mod-
ule and a T8 module. Forces a TC module to be converted
into both a T5 and a T8 module. This option is only for use
with library modules.

I Displays progress information as the conversion proceeds.
L Loads the tool onto a transputer board and then terminates.

O filename | Specifies an output file. If no output file is specified the
name is taken from the input module and a .tco extension
is added. If more than one output file is specified then the
last one takes precedence.

P Forces TA and TC modules to be converted to T8 modules.

XM Directs the transputer-hosted versions of the tool to be exe-
cuted so that they can be restarted without rebooting by the
server.

X0 Directs the transputer-hosted versions of the tool to be exe-

cuted once on the transputer board and then terminate.

Options must be preceded by ‘=’ for UNIX based toolsets and ‘/’ for VMS
and MS-DOS based toolsets.

Options may be entered in upper or lower case and can be given in any order.
Options must be separated by spaces.

Any string not recognised as an option is treated as the name of the file to be
converted.

Table 13.1 icvlink command line options

Examples

icvlink myprog.tdx

72 TDS 275 02 March 1991

13.2 Running the format convertor 249

In this example icvlink is used to convert an occam object file which
has been compiled for a T4 transputer. The output filename will default to
myprog.tco.

icvlink myprogc.bin
In this example ievlink is used to convert an object file, produced by the IN-
MOS 3L Parallel C compiler. The output filename will default to myproge. tco.
13.2.1 Default command line
A set of default command line options can be defined for the tool using the
ICVLINKARG environmental variable. Options must be specified using the syn-
tax required by the command line.
13.2.2 Input files
The format convertor will accept a compiled object file, a linked object file or a

library file, in LFF format, as input. The following sections describe the use of
the format convertor in the context of these file types.

Compiled object files

The format convertor may be used to convert any compiled object files. The
convertor will produce compiled modules in TCOFF format. Any libraries required
to be linked with the compilation modules must also be converted (see below),
before the linker 11ink can be used to produce the linked object file.

Library files

The format convertor will convert a library file which is in LFF format to the
new TCOFF format but it will not generate a new library file. When a library is
converted the resulting file contains a concatenation of all the converted modules.
In order to create a library file the librarian tool 11iber, supplied with this toolset,
must be used to prepend the library index.

Linked object files
Linked object files in LFF format may also be converted into TCOFF format.
The procedure for converting linked files is similar to that for converting compiled

object files. The format convertor will convert a linked object file which is in LFF
format into a TCOFF format file. This file may then be supplied as an input file to

72 TDS 275 02 March 1991

250 13 icvlink — TCOFF convertor

the linker tool 11ink in order to produce a linked object file in the new format.

13.2.3 Output files

The format convertor creates a single TCOFF object module. As indicated above,
if either a library or linked object module is used as input then the output module
must be processed by the current 11ibxr or ilink tools.

13.3 Transputer classes and error modes

Both the members and the meaning of the different transputer classes has
changed for this issue of the toolset. icvlink therefore has to impose a
transputer class on any module whose class has no direct representation in the
current toolset. This also applies to error modes. The following rules are used
for transputer classes and error modes:

¢ The error mode UNDEFINED is converted to UNIVERSAL.

e Transputer class TA does not change name but note that the meaning of
this class has changed, (see section 4.3).

o Transputer class TC is converted to transputer class T5.

For more information on transputer classes and error modes see sections 4.3
and 4.4.

The command line options ‘D" and ‘P’ can be used to override these rules. The
command line option ‘P’ causes TA and TC modules to be converted to T8
modules. The ‘D’ option is designed to be used when converting libraries that
contain TA and TC modules. When a TA library module is converted with this
option two modules will be generated by the conversion; one ‘new style’ TA
module and one T8 module. For a TC library module converted with the ‘D’
option, a T5 and T8 module will be created.

The ‘P’ option may be used to convert any compiled, library or linked object
modules. The ‘D' option, however, is restricted to converting library modules,

because the linker can selectively load library modules whereas it cannot selec-
tively load compilation modules.

13.4 Summary of rules for using ievlink

1 When occam or C source code is available icvlink should not be
used. Instead the source code should be recompiled using the compiler

72 TDS 275 02 March 1991

13.5 Error messages 251

supplied with this toolset.

2 The libraries supplied with this toolset must not be linked with converted
object modules. Instead the library files originally called by the converted
modules must also be converted so that the modules may be linked
correctly. Although LFF and TCOFF libraries may use the same standard

names, the format of TCOFF libraries and the calling conventions used,
are completely different to LFF library conventions.

13.5 Error messages
This section lists each error and warning message that can be generated by the

convertor. Messages are in the standard toolset format which is explained in
section 2.12.1,

13.5.1 Warning Messages
filename - symbol, implementation of channel arrays has changed
Channel arrays are now represented differently. This should be remem-

bered when mixing code compiled with different generations of the oc-
cam compiler or configurer.

13.5.2 Serious errors
filename - bad format: reason

The named file does not conform to a recognised INMOS file format or
has been corrupted.

Could not open for input

The named file could not be found/opened for reading.
Could not open for output

The named file could not be opened for writing.
No input file supplied

No file name has been placed on the command line.

Only one input file allowed

72 TDS 275 02 March 1991

252 13 ievlink — TCOFF convertor

More than one file name has been placed on the command line.
Parsing command line token

An unrecognised token was found on the command line.
Promote and duplicate options conflict

The P (promote) and D (duplicate) options have conflicting meanings and
should not be used in conjunction.

72 TDS 275 02 March 1991

14 idebug — debugger

This chapter is describes the network debugger tool idebug. It begins by
describing the command line syntax and shows how to invoke the debugger in
the two main debugging modes. The rest of the chapter lists and describes in
detail the symbolic debugging functions and Monitor page commands and ends
with a list of error messages.

Chapter 7 describes how to debug occam transputer programs.

14.1 Introduction

The network debugger idebugis a special purpose debugger for transputers.
It can be used to examine stopped programs (post-mortem debugging) or to
execute programs interactively (breakpoint debugging).

Programs can be analysed using the symbolic functions which operate using
source code symbols or the Monitor page commands which operate at memory
and processor level. Symbolic and Monitor page environments are separate but
can be recalled from each other at will.

Symbolic functions allows files to be examined, variables inspected, and proce-
dures traced, from source code level. Monitor page commands allow transputer
memory to be examined and processor state to be determined anywhere on the
network. Symbolic and Monitor page environments can be recalled from each
other at any time.

14.1.1 Post-mortem debugging

Post-mortem mode debugging allows stopped programs to be analysed from the
residual contents of transputer memory or from a network dump file. Programs
that run on the root transputer must be debugged from a memory dump file
because the debugger overwrites the root transputers memory. The memory
dump file is created using the idump tool.

14.1.2 Breakpoint debugging

Breakpoint mode debugging allows transputer programs to be executed interac-
tively using breakpoints set in the code. Breakpoints can be set symbolically on
lines of source text or at transputer memory addresses, and values can be mod-
ified in transputer memory to show the effect of changing variables. Breakpoint
mode debugging requires the use of two or more transputers.

72 TDS 275 02 March 1991

254 14 idebug — debugger

Certain symbolic functions and Monitor page commands are only available in
breakpoint mode.

14.1.3 Mixed language debugging

When debugging programs constructed from a mixture of languages from differ-
ent INMOS toolsets (0ccam and C for example), you should always use the
version of idebug with the highest version number (as displayed in the Help
or Monitor page). This is true for all versions of idebug with a version number
greater than V2.00.00. This will ensure that no toolset incompatibilities occur
(for instance idebug supplied with the first release of the ANSI C toolset does
not fully understand the output from occon€£).

14.2 The root transputer

idebug can be used to debug single and multitransputer programs. The tech-
niques and commands to use when invoking the debugger differ slightly accord-
ing to whether or not the program (or a process forming part of the program)
runs on the root transputer, and according to the debugging mode (post-mortem
or breakpoint).

The root transputer is the name given to the processor that is directly connected
to the host computer. In a transputer network that is connected to the host it forms
the root of the network. The debugger always runs on the root transputer, which
must be a 32-bit transputer with at least one Megabyte of memory (preferably
two).

The relationship of the root transputer to the host computer and the rest of the
network is illustrated below.

host computer root transputer
fs link(s
{ user (s) rest of
v process network

Two procedures are used to debug programs in post-mortem mode, depending
on whether the application is configured to use the root transputer. Programs that
use the root transputer are referred to in this chapter as R-mode programs, and
programs that do not use the root transputer are referred to as T-mode programs.
Command line options are used to select the correct mode of operation for

72 TDS 275 02 March 1991

14.2 The root transputer 255

idebug.

To avoid the need for a memory dump applications configured to use the root
transputer can be skip loaded. Skip loading requires at least one extra processor
on the network but speeds up debugging considerably and is the recommended
method where more than one processor is available. iskip can be used to
skip any number of processors on a network by invoking the tool successively.

14.2.1 Board wiring

Before any program can be debugged in post-mortem mode on a transputer
board the Analyse signal must be asserted on the network once, and once only.
Because different procedures must be adopted for programs which do and do not
use the root transputer, the debugger cannot assert the signal automatically and it
must be asserted by passing the appropriate iserver option from the idebug
command line. Table 14.3 gives a summary of the command sequences to use
for the two program modes on different board types.

14.2.2 Post-mortem debugging R-mode programs

Code running on the root transputer and loaded with iserver directly is de-
bugged in post-mortem mode from a memory dump file which is specified by
the ‘R’ option. The memory dump file must be created using the idump tool
before the debugger is invoked. Code on other transputers is debugged down
transputer links in the normal way.

In R-mode programs idump asserts the Analyse signal and the ‘SA’ option is
not required on the idebug command line. In fact a second assertion of the
signal would cause data in the memory to become corrupted. If idump is not
invoked then the debugger cannot load onto the root transputer and a booting
error is reported.

Details of the idump and iskip tools can be found in chapters 15 and 24
respectively.

14.2.3 Post-mortem debugging T-mode programs

T-mode programs are loaded using iskip and subsequently debugged using
the “T" option to specify the root transputer link to which the network is connected.
The ‘SA’ server option must also be added to the idebug command line in order
to assert Analyse.

If the *SA’ option is not given, the debugger is not booted onto the root transputer |

|
72 TDS 275 02 March 1991

256 14 idebug — debugger

and the server aborts with an error message. If the server is inputting data at
the time some corruption of the data may occur. The debugger should then be
reinvoked with the correct options.

14.2.4 Post-mortem debugging from a network dump file

To suspend a post-mortem R or T debugging session without losing the original
context, the Monitor page ‘N’ command can be used to dump the entire state of a
network into a network dump file (including Freespace if required). The debugger
can then be invoked on the file without being connected to the network.

Notes: This option will only work for programs that have not been interactively
breakpoint debugged.

Memory dump files and network dump files are not the same: the former con-
tains a single processor's memory image while the later contains data about a
complete network. They are also in different formats.

14.2.5 Debugging a dummy network

The debugger may be used to debug a program using dummy data. Using
the debugger command line ‘D’ option which simulates the contents of memory
locations and registers, static features of a program may be examined. This
is useful to determine processor connectivity and memory mapping for each
processor in the network. Because memory locations etc. are simulated, this
option only requires the root transputer in order to execute the debugger (even
when used with a bootable file for a network of transputers).

This option may also be used to explore the features of the debugger.

14.2.6 Methods for breakpoint debugging

Breakpoint mode debugging does not require use of the memory dump tool be-
cause the program is automatically skip loaded over the root transputer where the
debugger is running. However, like all skip loads it requires an extra processor
in the network.

72 TDS 275 02 March 1991

14.3 Running the debugger 257

14.3 Running the debugger

The debugger is invoked using the following command line:
= idebug filename {options}

where: filename is the program bootable file.

options is a list of one or more options from table 14.1.

Options must be preceded by ‘-’ for UNIX based toolsets and '/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order on the command line.

Options must be separated by spaces.

idebug is unique amongst toolset tools in that when invoked with command
line options its driver program does not automatically reset (or analyse as appro-
priate) the root transputer. This is due to the diversity of hardware configurations
where the appropriate sequence may not be obvious to the driver. Because of
this, the task of selecting the appropriate iserver command is delegated to
the user.

Failure to supply the appropriate iserver reset (sr) or analyse (sa) options
along with idebug command line options will result in iserver failing to boot
idebug.

Only when invoked with no command line options at all will i debug automatically
reset the root transputer and display its own help page.

72 TDS 275 02 March 1991

258 14 idebug — debugger

Option Description

B linknumber | Interactive breakpoint debug a network that is connected to
the root processor via link linknumber. idebug executes
on the root processor.

Must be accompanied by the iserver ‘SR’ option.

M linknumber | Postmortem debug a previous interactive debugging ses-
sion. idebug executes on the root processor.

Must be accompanied by the iserver ‘SA’ option.

T linknumber | Postmortem debug a program that does not use the root
processor, on a network that is connected to link linknum-
ber. idebug executes on the root processor.

Must be accompanied by the iserver 'SA’ option.

R filename | Postmortem debug a program that uses the root transputer.
filename is the file that contains the contents of the root
processor (created by idump). The file is assumed to have
the extension .dmp if none is supplied.

N filename | Postmortem debug a network from a network dump file file-
name (created by idebug). The file is assumed to have
the extension .dmp if none is supplied.

Must be accompanied by the iserver ‘SR’ option.

C type Specify a processor type (e.g. T425) instead of a class
(e.g. TA) for programs that have not been configured.

D Dummy debugging session. Can be used for familiarisation
with the debugger or establishing memory mappings.

Must be accompanied by the iserver ‘SR’ option.

A Assert subsystem analyse. Directs the debugger to assert

Analyse on the network connected to the root processor.
S Ignore subsystem error status when breakpoint debugging.
I Display debugger version string.

Must be accompanied by the iserver ‘SR’ option.

Table 14.1 Debugger command line options

72 TDS 275 02 March 1991

14.3 Running the debugger 259

14.3.1 Toolset file types read by the debugger

The debugger uses information within files produced by toolset tools in order
to establish the hierarchy of components used to produce a bootable file. The
different types of files within the toolset are described in section 2.9.

Table 14.2 provides a list of file types used by the debugger (in roughly the same
order the debugger interrogates them):

File Description

extension

.btl Bootable to be debugged.
.cfb Configuration data file.

.clu Configuration object file.

.lku Linked unit generated by linker.
.tco Object file generated by compiler.
+1ib Library file.

.oce occam source code file.

.inc occam include file.

.pgm occam configuration file.

.c C source code file.

.h C include file.

.dmp Debugger dump file.

Table 14.2 File types read by debugger

With the exception of a dump file which must have a . dmp filename extension,
the debugger will accept different extensions for a particular file type. (For exam-
ple the extensions used by imakef such as .tah which can be used instead
of .tco).

14.3.2 Environment variables

idebug requires three environment variables to be set up on the host system
(in addition to those required to build a bootable file):

72 TDS 275 02 March 1991

260 14 idebug — debugger

ITERM Defines key mappings for debugger symbolic functions and
some Monitor page commands.

IDEBUGSIZE Defines the amount of memory available on the root trans-
puter board. This variable must be specified for idebug to
work correctly (idebug requires at least 1Mbytes of avail-
able root transputer memory).

IBOARDSIZE The amount of memory available for the application program.
Required for single transputer programs (created from linked
units using icollect with the ‘T’ option and without the
‘M’ option), where the memory size was not specified.

Details of how to set up the variables can be found in the Delivery Manual that
accompanies the release.
14.3.3 Program termination

If the program terminates on issuing the server terminate command the following
message is displayed:

[Program has finished - hit any key for monitor]

The debugger can be re-entered after server termination by pressing any key.
The final state of the network can be examined using the full range of Monitor
page and symbolic commands.

The exit status returned by the program is displayed on the Monitor page.

If the program contains independent processes which require no communication
with the server the debugger allows the program to be resumed. In this case the
debugger displays the following warning message:

[Warning: The server has been terminated by the program]

14.3.4 Post-mortem mode invocation

To invoke the post-mortem debugger use the appropriate command from the
following list.

Command lines are duplicated in UNIX and MS-DOS/VMS formats. Use the
appropriate command line format for your system.

Note: Commands are given for a B008 board wired subs (See section 14.4.1).
For the commands to use on other board types see section 14.4,

72 TDS 275 02 March 1991

14.3 Running the debugger 261

idebug bootablefile -t linknumber -sa
idebug bootablefile /t linknumber /sa

idebug bootablefile -r filename
idebug bootablefile [x filename

idebug bootablefile -n filename -sr
idebug bootablefile /n filename /sr

idebug bootablefile -m linknumber -sa
idebug bootablefile /m linknumber /sa

where: bootablefile is the program bootable file.

linknumber is the number of the link of the root processor which is con-
nected to the network.

filename is a network dump file or a root transputer memory dump file.

Use the ‘“t’ option for programs that do not use the root transputer, that is, those
loaded by using iskip. The program is debugged from the program image that
is resident in the memory of each transputer; the information about the rest of
the network is extracted down the root transputer link. The ‘&’ option produces
faster debugging option because the root transputer memary image is not saved.
However, the option does require an extra transputer on the network. The ‘t’
option should be accompanied by the iserver ‘sa’ option to assert Analyse on
the network.

Use the ‘r’ option for programs that use the root transputer in a network. The
dump file is created by using idump, which produces a dump of the program
image on the root transputer only; the debugger extracts information about other
transputers on the network (if applicable) via the root transputer links.

Use the ‘n’ option to debug programs without access to the original network
of transputers. This is effectively debugging off-line. The network dump file is
generated by the idebug Monitor page ‘N' command (only for programs that
have not been breakpoint debugged). The ‘n’ option should be accompanied by
the iserver ‘sx’ option to reset the network.

Use the ‘m’ option to debug a previous breakpoint debugging session where
either the network has crashed (error flag was set) or you have used the
host key to terminate the debugger. This option is the same as the ‘t’
option but informs the debugger the breakpoint runtime kernel is present. The
‘m’ option should be accompanied by the iserver ‘sa’ option to assert Analyse
on the network. The same action may be achieved when using the debugger
in breakpoint mode with a subsystem wired subs (see section 14.4.1) by use of

72 TDS 275 02 March 1991

262 14 idebug — debugger

the Monitor page ‘Y’ option (see section 14.6).

Symbolic functions and Monitor page commands that support breakpointing are
absent in the post-mortem debugger.

14.3.5 Reinvoking the debugger on single transputer programs

For programs running on a single transputer only and debugged from a memory
dump file the debugger can be reinvoked on the same dump file by passing the
‘SR’ option to iserver from the idebug command line. This option is required
to reset the transputer before loading the debugger program, which is normally
performed by idump.

14.3.6 Breakpoint mode invocation
To invoke the debugger in breakpoint mode use one of the commands below.

Note: Commands are given for a BO08 board wired subs. For the commands
to use on other board types see section 14.4.

idebug bootablefile -b linknumber -sz
idebug bootablefile /b linknumber /sx

where: filename is the program executable file

linknumber is the number of root transputer link where the application
network is connected.

In breakpoint mode idebug loads the bootable file directly onto the network and
sets up a runtime kernel and virtual link system on each processor used by the
program. iserver is not required to load the program, but an extra processor
is required to run the debugger; the program is in effect 'skip’ loaded.

Clearing error flags on transputer boards

Processors in the network with their error flags set can cause idebug to signal
a crashed program even when they are not being used by the program. This is
because idebug uses subsystem services to monitor error flag status through-
out the network. A reliable method of clearing all of error flags on a network is to
run a network check or worm program such as ispy before invoking idebug.

The ispy program is provided as part of the board support software for INMOS

iq systems products. These products are available separately through your local
INMOS distributor.

72 TDS 275 02 March 1991

14.3 Running the debugger 263

An alternative method of ensuring that error flags are cleared on a network is to
load a dummy process on each processor. The act of loading the dummy code
onto the processors clears each error flag.

The following is an example of a dummy process which could be used to clear
the error flag on a processor. The code simply starts up then shuts down imme-
diately.

PROC dummy ()
SKIP

So that the iserver is terminated correctly the root processor should execute the
following variation:

#INCLUDE "hostio.inc"
#USE "hostio.lib"

PROC root.dummy (CHAN OF SP fs, ts)
so.exit (fs, ts, sps.success)

Generate a linked unit containing the dummy process code for each processor
on the network. Write a configuration description which places the linked units
on each processor, configure and collect the program, and load the resulting
bootable file onto the network using iserver. The bootstrap code clears the
error flag on each processor before loading the process code.

Program loading

In breakpoint mode idebug loads the bootable program directly onto the net-
work and sets up a debugging runtime kernel on each processor. iserver
is not required to load programs for breakpoint debugging. An extra processor
is required on the network to run a program in breakpoint mode because the
program is in effect skip loaded.

When first invoked the breakpoint debugger immediately enters the Monitor page
where the ‘B’ (Breakpoint Menu) command can be used to set breakpoints before
the program is started.

14.3.7 Function key mappings

All the debugger symbolic functions, and some Monitor page commands, are
assigned to specific keys on the keyboard by the ITERM file (the file specified by
the environment variable ITERM). For the correct keys to use on your terminal
consult the keyboard layouts provided in the Delivery Manual that accompanies

72 TDS 275 02 March 1991

264 14 idebug — debugger

the release.

ITERM files are supplied with the release for terminals commonly used with your
host system but may also be created to suit your own requirements. Details of
the ITERM file and an example listing which illustrates the format can be found
in part 2, appendix G.

Key-mapped symbolic functions and Monitor page commands are listed in sec-
tion 14.6.5.

14.4 Debugging programs on INMOS boards

On transputer boards the Analyse and Reset signals can be propagated from
the root transputer in two ways, and this influences the options that must be used
when debugging programs. (See section 6.4.1).

14.4.1 Subsystem wiring

On transputer boards the subsystem signal is either propagated unchanged to all
transputers on the network (known as wired down), or the signals are connected
to the subsystem port (wired subs) from where they are controlled by the board's
root processor.

On B004 boards and on all boards where subsystem is wired in the same way
Analyse must be asserted on the network before transputers can be accessed
by the debugger from the root processor. However, if Analyse is asserted more
than once the program will be corrupted in transputer memory.

The wiring type can be identified by the hardware addresses of the three sub-
system registers. B004-type boards use the following addresses:

Signal | Hardware address
Reset #00000000
Analyse | #00000004
Error #00000000

An example of a B0O4-type board is the IMS B404 TRAM. For details of the
subsystem wiring on other boards consult the Datasheet or board specification.

In addition, TRAM boards and B004 boards differ in the way the subsystem port

is used. On TRAMs these subsystem signals are propagated to all transputers
on the network, whereas on B004 boards the signals are not propagated at all.

72 TDS 275 02 March 1991

14.5 Debugging programs on non-INMOS boards 265

14.4.2 Debugging commands

The above conditions affect the commands you must use when debugging T-
mode and R-mode programs. To simplify the selection of the correct command
Table 14.3 has been constructed giving the command line options to use for
different combinations of board type, subsystem wiring, and program mode.

Note: Command lines are given in the UNIX format (‘=' option switch character)
in order to maintain simplicity in layout. For MS-DOS and VMS based systems
replace ‘=" by ‘/’ in all command lines.

For further details about loading programs see chapter 6.

14.4.3 Detecting the error flag in breakpoint mode

In breakpoint mode the debugger detects that a processor has its error flag set
by use of the subsystem services. If your hardware is not wired up to use the
subsystem services then the debugger is unable to detect when an error flag
is set; this may cause the debugger to hang for no apparent reason. On such
networks you should use the iserver ‘SE’ option to detect when an error flag
has been set. Note however that detection of an error flag set will terminate the
debugger without warning.

Note: When using the debugger in breakpoint mode you should if possible wire
your hardware up to use the subsystem services.

14.5 Debugging programs on non-INMOS boards

If your hardware does not adhere to the INMOS subsystem convention you will
need to determine how the hardware is configured and the appropriate command
line options yourself.

You will probably need to use the idebug command line ‘S’ option when break-
point debugging in order to stop the debugger monitoring the subsystem error
status, and the iserver ‘SE’ option to determine when the error flag has been set.

14.6 Monitor page commands

This section lists and describes the Monitor page commands. The commands are
tabulated in alphabetical order for easy reference. Where a command invokes
an option submenu the operation of each option is described. Summaries of the
commands can also be found in the Handbook that accompanies the occam
toolset release.

72 TDS 275 02 March 1991

266 14 idebug — debugger

Board | Wiring | Mode | Command line(s) to use
TRAM | down T idebug program =b linknumber -sr -set -st

idebug program -m linknumber —sa

idebug program -t linknumber —sa

R idump oulputfile size
idebug program - filename

subs T idebug program =b linknumber -sr

idebug program -m linknumber —-sa

idebug program -t linknumber -sa

R idump outputfile size
idebug program -r filename

B004 | down T idebug program -b linknumber -sr -se} -st

idebug program —m linknumber —sa

idebug program -t linknumber -sa

R idump outputfile size
idebug program -x filename

subs i idebug program =b linknumber -a -sr

idebug program -m linknumber -a -sa

idebug program -t linknumber -a -sa

R idump outputfile size
idebug program -r filename -a

For MS-DOS and VMS based toolsets use the ‘/’ option switch character.

The ‘si’ option may also be used on any command line to display activity
information when loading the debugger.

Modes: R = program using the root transputer; T = program not using the
root transputer, and debugged down a root transputer link.

t See section 14.4.3.

Table 14.3 Commands to use when debugging BO04 and TRAM boards
14.6.1 Command format
All Monitor page commands are either single letter commands or are invoked by

a single function key press. Key mappings for the few general commands that
use function keys can be found in the Delivery Manual that accompanies the

72 TDS 275 02 March 1991

14.6 Monitor page commands 267

release.

14.6.2 Specifying transputer addresses

Many Monitor page commands require a transputer address. If none is given the
debugger assumes a default address when one is displayed with the prompt. The
default address is the last address specified or located to and can be selected

by pressing [RETURN].

Addresses can be specified in decimal or hexadecimal format. Hexadecimal
numbers must be given as a sequence of hexadecimal digits preceded by the
characters ‘#, '$’, or ‘¢’. The ‘# and ‘$’ characters are used to prefix a full
hexadecimal address. The '&’ character adds MOSTNEG INT to the hexadec-
imal value using modulo arithmetic. This is useful when specifying transputer
addresses which are signed and start at MOSTNEG INT. For example, on a 32
bit transputer %70 is interpreted as #80000070 and on a 16 bit transputer as
#8070.

14.6.3 Scrolling the display

Several commands mapped by the ITERM (see below) may be used to scroll
certain of the Monitor page displays. Cursor keys may also be used.

14.6.4 Editing keys

The following string editing functions are available for on-screen editing of strings
for certain commands:

Key Effect
Move the cursor to the beginning of the string.
END OF LINE] | Move the cursor to the end of the string.

DELETE LINE] | Delete the string.

Move the cursor left one character.
Move the cursor right one character.
Replace the current string with the string used in

the previous invocation of the command.

DELETE] Delete the character to the left of the cursor.
Enter the string.

72 TDS 275 02 March 1991

268 14 idebug — debugger

Note: [START OF LINE], [END OF LINE], [DELETE LINE|, and [DELETE) are mapped
by the ITERM file to specific keys on the keyboard. Details of the key mappings
on your terminal can be found in the Delivery Manual that accompanies the
release.

will not be applicable to some commands.

14.6.5 Commands mapped by ITERM

Certain Monitor page commands are mapped to specific keys on the terminal by
the ITERM file. Commands mapped in this way include keys which are used to
scroll the display (see below), commands which produce the same effect in both
debugging modes, and the commands [RELOCATE] and [RETRACE] which invoke
the corresponding symbolic mode functions.

The keys to use for all Monitor page commands mapped by ITERM can be found
by consulting the keyboard layouts supplied in the Delivery Manual.

72 TDS 275 02 March 1991

14.6 Monitor page commands 269

14.6.6 Summary of main commands

Key Meaning Description
A ASCII View a region of memory in ASCIL.
Bi Breakpoint Display the Breakpoint menu enabling break-
points to be set, cleared or listed.
Cc Compare Compare the code on the network with the code

that should be there to ensure that the code has
not been corrupted.

D Disassemble Display the transputer instructions at a specified
area of memory.

E Next Error Switch the current display information to that of
the next processor in the network which has
halted with its error flag set.

F§ Select file Select a source file for symbolic display using
the filename of the object file produced for it.
G Goto process | Goto symbolic debugging for a particular pro-
cess.
H Hex View a region of memory in hexadecimal.
| Inspect View a region of memory in any type. Types are
expressed as occam types.
Ji§ Jump Start or resume application program.

K | Processor names | Display the names of all processors in the net-
work.

1 = Breakpoint mode only

§ = String editing functions available, see section 14.6.4.

72 TDS 275 02 March 1991

270

14 idebug — debugger

Key Meaning Description

L Links Display instruction pointers and workspace descrip-
tors for the processes currently waiting for input or
output on a transputer link, or for a signal on the
Event pin.

M Memory map | Display the memory map of the current transputer.

N Network dump | Copy the entire state of the transputer network into
a 'network dump’ file in order to allow continued
(off-line) debugging at a later date.

O | Specify process | Resume the source level symbolic features of the
debugger for a particular process.

P Processor Switch the current display information to that of an-
other processor.

Q Quit Leave the debugger and return to the host operat-
ing system.

R Run queues Display instruction pointers and workspace descrip-
tors of the processes on either the high or low pri-
ority active process queue.

S} | Show messages | Display the Messages menu enabling the default
actions of the debugger to debug support functions
to be changed.

T Timer queues | Display instruction pointers, the workspace descrip-
tors and the wake-up times of the processes on
either the high or low priority timer queue.

Uig Update Update the monitor page registers to reflect the cur-
rent state of the processor.

V | Process names | Display the names of all processes on the current
transputer.

Wi Write Write to any portion of memory in any occam type
(e.g. REAL32).

X Exit Return to symbolic mode.

Yi Postmortem Change a breakpoint debug session into a post-
mortem debug session.

? Help Display help information.

t = Breakpoint mode only

72 TDS 275 02

March 1991

14.6 Monitor page commands 271

14.6.7 Symbolic-type commands and scroll keys

Key Description
f Locate to the last instruction executed on the current processor.

[RETRACE] § | Switch to symbolic mode and perform symbolic operation.

[RELOCATE|§ | Switch to symbolic mode and perform symbolic operation.
Display help information.

i | Re-draw the screen.

[LINE UP] #

f
§ | Scroll the currently displayed memory, disassembly,

[PAGEDOWN # | or queue.

Scroll the currently displayed processor left or right.

i For key bindings see the Delivery Manual.

72 TDS 275 02 March 1991

272

14 idebug — debugger

ASCII

This command displays a segment of transputer memory in ASCII for-
mat, starting at a specific address. If no address is given the last
specified address is used. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default (last specified) address, or
enter the desired address. The address can be entered as a decimal
number, a hexadecimal number preceded by ‘#, or the short form
‘sh...h"

The memory is displayed in blocks of 16 rows of 32 ASCII bytes, each
row preceded by an absolute address in hexadecimal. Bytes are or-
dered from left to right in each row. Unprintable characters are substi-
tuted by a full stop.

[11. [1]. [FPAGEUP], [FAGE DOWN] keys can be used to scroll the display.

Breakpoint menu (Breakpoint mode only)
This command invokes the Breakpoint Menu:

- Set a breakpoint on this processor

- Toggle a breakpoint on this processor

- Clear a breakpoint

-~ Clear all breakpoints on all processors

- Clear all breakpoints on this processor

Set a breakpoint at all entries this processor
- Set a breakpoint at all entries all processors
- Set a breakpeint at all main () this processor
- List all breakpoints

- List all breakpoints on this processor

- Quit

oNNEHERROREPOAEA®N
1

Breakpoint option (A,B,C,E,G,L,M,P,Q,S,T) ?

Options are selected by entering one of the single letter commands.
Pressing with no typed input when prompted for a breakpoint
number or address cancels the option.

72 TDS 275 02 March 1991

14.6 Monitor page commands 273

= Note that main () relates to the fixed C function called at C program
startup. entries (entrypoints) relate to the first procedure called at
occam program startup for non-configured programs and the start of
configuration code for configured programs.

Breakpoints are assigned a unique number which must be specified
with the ‘C’ option. Numbers are given on the List Breakpoints displays.

The 'E' and 'G" options set breakpoints at the entrypoint of a process
(at configuration level).

Note: Only breakpoints which are set in symbolic mode (at the be-
ginning of a statement) are properly supported. Setting breakpoints at
arbitrary addresses using the ‘S’ option may cause incorrect execution
of the program.

Compare memory

Compare memory compares the code on the network with the code
that was loaded, to check that memory has not become corrupted.

Note: This option treats breakpoints as corrupted code.

The following menu is displayed:

Compare memory
Number of processors in network is : 2

= Check whole network for discrepancies
— Check this processor for discrepancies
Compare memory on screen

- Find first error on this processor

- Quit

oWy
1

Type one of the options A, B, C, D, or Q. Option ‘Q’ returns you to the
Monitor page.

Checking the whole network — option A

Option ‘A’ checks the whole network processor by processor and dis-
plays a summary of the discrepancies found.

72 TDS 275 02 March 1991

274 14 idebug — debugger

) If there no errors the following message is displayed:
Checked whole network OK

If any errors are detected the number of errors is given along with the
address of the first error found and the name of the processor on which
it occurred.

Checking a single processor — option B

Option ‘B’ checks just the current processor. In all other respects it is
similar to option ‘A’

Compare memory on screen — option C

Option ‘C’ displays the actual and expected code for for each address
in a block of memory. Discrepancies are marked with an asterisk (‘*’).

Memory is checked in blocks of 128 bytes. At the end of each block,
type either ‘Q’ to quit, or to read and display the next block.

The format of the display is similar to the following example:
Network Code Correct Code
#800001234 : 0011223344556677 7766554433221100 *
#80000123C : 0011223344556677 0011223344556677
#800001244 : 0011223344556677 7766554433221100 *
#8000012AC : AABBCCDDEEFF0011 AABBCCDDEEFF0011

Press [DOWN] to scroll memory, [SPACE] for next
error, or Q to quit :

Pressing [SPACE] automatically invokes option ‘D' — Find first
erxor. ...

Find first error — option D
Option ‘D' searches the current processor's memory for the first oc-
currence of a discrepancy. If a discrepancy is found the display is

switched to mode ‘C’ and the memory can be checked and displayed
as in ‘Compare memory on screen'.

72 TDS 275 02 March 1991

14.6 Monitor page commands 275

0]

Disassemble memory

The Disassemble command disassembles memory into transputer in-
structions. The command interprets all the memory as instructions.
Specify an address at which to start disassembly after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default address, or enter the de-
sired address. The address can be entered as a decimal number, a
hexadecimal number preceded by ‘#’, or the short form ‘sh. . .h'"

The memory is displayed in batches of sixteen transputer instructions,
starting with the instruction at the specified address. If the specified
address is within an instruction, the disassembly begins at the start
of that instruction. Where the preceding code is data ending with a
transputer ‘p£ix’ or ‘nfix’ instruction, disassembly begins at the start
of the pfix or nfix code.

Each instruction is displayed on a single line preceded by the address
corresponding to the first byte of the instruction. The disassembly is a
direct translation of memory contents into instructions; it neither inserts
labels, nor provides symbolic operands.

Next Error

Next Error searches forward through the network for the next processor
which has both its error and halt-on-error flags set. Processors are
searched in the same order as they are listed by the ‘K’ command,
starting from the current processor and wrapping round. If a processor
is found with both flags set the display is changed to the new processor
as if the ‘P’ option had been used. Press to display the source
line which caused the error.

If there is only one processor in the network you are informed of the
fact.

72 TDS 275 02 March 1991

276

14 idebug — debugger

Select source file

This command enables a program source file to be displayed within the
symbolic debugging environment for a particular processor. This allows
breakpoints to be set in modules which have not yet been reached in
the program’s execution. (Source which has not yet been executed
cannot be displayed using the ‘O’ or ‘G’ options because the Iptr and
Wdesc addresses are not yet known.)

This command may also be used to browse source files rather like the

CHANGE FILE] symbolic function. However, unlike CHANGE FILE] it allows
you to use some of the symbolic debugging operations.

The behaviour of this command will differ depending on whether
icconf£, the configurer supplied with the ANSI C toolset has been
used rather than using occon£ the occam configurer supplied with
this toolset, or indeed no configurer at all (in the case of programs
running on a single processor). For example icconf may be used to
combine 0ccam modules with mixed language modules during con-
figuration.

The differences in the behaviour of the command are described below:
Behaviour of command when occonf is used

The debugger first prompts for the filename of a linked object module.
The full linked filename (including extension) must be supplied.

Linked unit filename ?

The linked filename must be specified because the debugger needs
to know which linked unit incorporated by a configurer #USE directive
you are interested in.

The debugger then prompts for the filename of a compiled object mod-
ule contained within the selected linked unit. The full object filename
(including extension) must be supplied.

Object module filename ?
The object module filename must be specified because the debugger
extracts the source code filename from the debug information in the

compiled object file.

Note: Editing keys may be used with this command to provide a simple
history mechanism (see section 14.6.4).

72 TDS 275 02 March 1991

14.6 Monitor page commands 277

— At each prompt this command may be aborted by pressing
with no typed input.

Behaviour of command when no configurer or icconf is used

If a processor has been configured to contain different processes, this
option first prompts for the process number of the source file:

Select process number (0 - N) ?

The range of numbers displayed in brackets are process numbers as-
signed by the debugger to different processes on the processor. Pro-
cess names can be determined by using the Monitor page Process
Name ('V’) option before invoking the ‘F' command.

Once a valid process number has been supplied (if applicable), the

debugger prompts for the filename of the compiled object module. The
full object filename (including extension) must be supplied.

Object module filename ?
The object filename must be specified because the debugger extracts
the source code filename from the debug information in the compiled
object file.

Note: Editing keys may be used with this command to provide a simple
history mechanism (see section 14.6.4).

At each prompt this command may be aborted by pressing
with no typed input.

72 TDS 275 02 March 1991

278 14 idebug — debugger

[G] Goto process

This command locates to the source code for any process which is
currently shown on the screen. The cursor is positioned next to the
Iptr, and permitted responses are listed on the screen as follows:

[CURSOR] then [RETURN], or 0 to F, (I)ptr,
(L)o, or (Q)uit

To select the desired process use the cursor keys to skip between
processes on the screen, or specify a value 0 to F. Press to
select the process indicated by the cursor. The saved Iptr is chosen
by typing ‘I’, and if currently in high priority, the interrupted low priority
process is chosen by typing ‘L’. The sixteen processes shown on the
right hand side of the display are chosen by typing ‘0’ to ‘F’. Type ‘Q’,
FINISH], or [REFRESH]| to abort this choice.

72 TDS 275 02 March 1991

14.6 Monitor page commands 279

[H] Hex

The Hex command displays memory in hexadecimal. Specify the start
address after the prompt:

Start address (#hhhhhhhh) ?

Press to accept the default address, or enter the desired ad-
dress. The address can be entered as a decimal number, a hex-
adecimal number preceded by ‘#', or the short form ‘sh. . .h" If the
specified start address is within a word, the start address is aligned to
the start of that word.

The memory is displayed as rows of words in hexadecimal format.
Each row contains four or eight words, depending on transputer word
length. Words are displayed in hexadecimal (four or eight hexadecimal
digits depending on word length), most significant byte first.

For a four byte per word processor the sequence of bytes in a single
row would be:

3210 7654 11 10 9 8 15 14 13 12

For a two byte per word processor, the ordering would be:

10 32 54 76 98 11 10 13 12 15 14
Words are ordered left to right in the row starting from the lowest ad-
dress. The word specified by the start address is the top leftmost word

of the display.

The address at the start of each line is an absolute address displayed
in hexadecimal format.

72 TDS 275 02 March 1991

280

14 idebug — debugger

Inspect memory

The Inspect command can be used to inspect the contents of an entire
array. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default address, or enter the de-
sired address. The address can be entered as a decimal number, a
hexadecimal number preceded by ‘#’, or the short form ‘¢h. . .h'"

When a start address has been given, the following prompt is displayed:

Typed memory dump
- ASCII
- INT
- BYTE
- BOOL
INT16
- INT32
- INTe64
- REAL32
- REALG64
- CHAN

wo-ToaoubsWwWwNhPREOoO
I

Which type (1 - INT) ?

Give the number corresponding to the type you wish to display, or press

to accept the default type.

ASCII arrays are displayed in the format used by the Monitor page
command ‘ASCII'. Other types are displayed both in their normal rep-
resentation and hexadecimal format.

The memory is displayed as sixteen rows of data. The address at the
start of each line is an absolute address displayed as a hexadecimal
number. The element specified by the start address is on the top row
of the display.

Start addresses are aligned to the nearest valid boundary for the type,
that is: BYTE and BOOL to the nearest byte; INT16 to the nearest
even byte; INT, INT32, INT64, REATL32, REALG4, and CHAN to the
nearest word.

72 TDS 275 02 March 1991

14.6 Monitor page commands 281

Jump into and run program

This command starts up a program from the Monitor page, or restarts
a process which has encountered a breakpoint or stop point inserted
by the debug support functions DEBUG . ASSERT and DEBUG . STOP.
(For details of these functions see part 2, section 1.10).

When starting a program the debugger converts (patches) the config-
uration external channels (those assigned to links) for each processor
into virtual channels for use with the debugging kernel. This action is
indicated by an activity indicator.

When the patching is complete the debugger prompts for a command
line for the program:

Command line:

When jumping into and resuming a program from a breakpoint, the
following menu is displayed:

Jump into Application

R - Resume breakpointed process

O - Resume all others

(abandon breakpointed process)

J - Jump to different location

Q - Quit

Which option (J,0,Q,R) ?

When resuming from an error, the following submenu is displayed:

Jump into Application

O - Resume all others

J - Jump to different location

Q - Quit

Which option (J,0,Q) ?

72 TDS 275 02 March 1991

282

14 idebug — debugger

o The four Resume options are listed in the following table.

Option

Description

R

Restarts the process that encountered the breakpoint.

o]

Ignores the stopped process and resumes monitoring the
network for other process activity. (When a process has
stopped other processes continue to run until they either
encounter a breakpoint or error, or become dependent on
the stopped process.)

Note: Using this option for a process stopped on a break-
point removes the process forever.

Restarts the process from a different location. Only use this
option if you are confident that the program can be resumed
from the new location; resumption from most locations will
corrupt the program.

Q

Quits the Resume submenu.

Note: Editing keys may be used with this command when starting the
program, see section 14.6.4.

[K] Processor names

This command gives the processor numbers corresponding to proces-
sor names used in the configuration description. Processor numbers
must be given when selecting specific processors for display by the

debugger.

Note: The debugger displays only the first 19 characters of the proces-
sor name. [f this is a problem you should make names unique within
the first 19 characters.

72 TDS 275 02

March 1991

14.6 Monitor page commands 283

Links

The Links command displays the instruction pointer, workspace de-
scriptor, and priority, of the processes waiting for communication on
the links, or for a signal on the Event pin. If no process is waiting, the
link is described as ‘Empty’. Link connections on the processor, and
the link from which the processor was booted are also displayed.

The debugger checks in configured programs that the link the root pro-
cessor has been booted from matches that expected by the configurer.
It it does not, the following message is displayed:

Booted from link N < Should be link M !!! >

The format of the display is similar to the following:

Link 0 out Empty
Link 1 out Empty
Link 2 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link 3 out Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Iptr: #80000321 Wdesc: #80000125 (Lo)
Link 3 in Iptr: #80000554 Wdesc: #80000170 (Hi)

Event in Empty

Link 0 connected to Host

Link 1 not connected

Link 2 connected to Processor 88, Link 1
Link 3 connected to Processor 1, Link 3

Booted from link 0

72 TDS 275 02 March 1991

284

14 idebug — debugger

Memory map

The Memory map command displays a memory map of the current
processor. The display includes the address ranges of on-chip RAM,
program code, configuration code, stack (workspace) and vectorspace,
the sizes of each component in bytes rounded up to the nearest 1K
bytes, total memory usage, and the address of MemStart, the first
free location after the RAM reserved for the processor's own use.

Also displayed is the total memory usage. Total memory usage indi-
cates the amount of memory used by a user program; this may include
a region of memory at the beginning of freespace. This will occur for
configuration code which is reclaimed from freespace before execution
of a user program starts. (The configuration code resides in a region of
memory which may be safely overwritten by the action of user code be-
cause the configuration code finishes executing before the user code
starts executing).

Total memory usage is the minimum memory size (for a particular pro-
cessor) you need fo specify to the configurer, collector or place in
IBOARDSIZE as appropriate.

Also displayed is the maximum number of processors that can be ac-
commodated by the debugger's buffer space. This will depend on the
amount of memory on the root processor, indicated to the debugger by
the host environment variable IDEBUGSIZE.

The address of MemStart is the value actually found on the transputer
in the network. If this does not correspond to that expected by the
configuration description, for example if a T414 was found when a
T800 was expected, the following message is displayed:

MemStart should be : #80000070 (TB00) !1t111

If an incorrect MemStart is detected the symbolic functions may not
work correctly. In these circumstances you should rebuild your program
for the correct processor types on the network before reinvoking the
debugger.

72 TDS 275 02 March 1991

14.6 Monitor page commands 285

@ Network dump

The Network dump command saves the state of the transputer network
for later analysis. If you quit the debugger without creating a network
dump file, debugging cannot continue from the same point without re-
running the program. This is because the debugger itself overwrites
parts of the memory on each transputer in the network.

Note: This command cannot be used in breakpoint mode (idebug
command line option ‘B’) or when post-mortem debugging a breakpoint
session (idebug command line option ‘M’).

Once a network dump file has been created, debugging can continue
from the file, and the debugger does not need to be connected to the
target network.

Before the dump file is created, the debugger calculates the disk space
required, and requests confirmation. The size of the file depends on
how much of each processor's memory is actually used in running the
program, and is displayed as follows:

Create network dump file
Number of processors to dump : 2
File size excluding Freespace : 112604 bytes
File size including Freespace : 2097308 bytes

Continue with network dump (¥,N) ?

To continue with the network dump, type ‘Y.

You will them be prompted whether to include Freespace in the dump
file (this is not normally required for configured programs).

Do you wish to include Freespace (Y,N) ?
Type 'Y’ or ‘N’ as appropriate and specify a filename after the prompt:
Filename ("network.dmp", or "QUIT") 2
Press to accept the default filename, enter a filename (any

extension will be replaced by ‘.dmp'), or type ‘QUIT’ (uppercase) to
exit.

72 TDS 275 02 March 1991

286

14 idebug — debugger

If the file already exists, you are warned:

File "network.dmp" already exists
Overwrite it (Y,N) ?

If you type ‘N’, you are reprompted for the filename.

While the dump file is being written, a message is displayed at the
terminal. For example:

Dumping network to file "network.dmp" ...
Processor 1 (T800)
Memory to dump : 10456 bytes ...

Specify process

This command restores symbolic debugging, either at the same source
line, or at another location. It can be used to locate to any source line,
whether or not a process is waiting or executing there. To ensure the
debugger locates to a valid process, it is better to use the ‘G’ command.

To return to symbolic debugging, the debugger requires values for
Iptr and Wdesc. Specify Iptr after the prompt:

Iptr (#hhhhhhhh) ?

The default displayed in parentheses is the last line located to on this
processor, or the address of the last instruction executed.

Either press to accept the default address, or enter the de-
sired address. The address can be entered as a decimal number, a
hexadecimal number preceded by ‘#’, or the short form ‘sh. . .h"

Useful addresses can be determined using the 'R, 'T", and ‘L' com-
mands to display specific addresses. The same addresses can be
listed by using the ‘G’ command. The value of the saved low priority
Iptr can also be used.

If the Iptr is not within the program body, the debugger indicates the
type of code to which it corresponds.

After pressing any key you are returned to the Monitor page.

72 TDS 275 02 March 1991

14.6 Monitor page commands 287

O

If the Iptr is valid, you are prompted for the Wdesc:

Wdesc (#hhhhhhhh) ?

If a displayed Iptr was specified, its corresponding Wdesc is offered
as a default. Press to accept the default, or specify a value
in the same format as Iptr.

If no symbolic features other than a single ‘locate’ are required, then
Wdesc is not needed and the default can be accepted.

If an invalid Wdesc is given, most of the symbolic features will not
work, or will display incorrect values. However, you can still determine
the values of scalar constants and some other symbols.

Any attempt to inspect or modify variables or channels, or to backtrace,
will give one of the following messages:

Wdesc is invalid - Cannot backtrace
Wdesc is invalid - Cannot Inspect variables

Wdesc is invalid - Cannot Modify variables

If the location to be displayed is in a library for which the source is not
available and the debugger cannot locate the call to that library, the
following message is displayed:

Wdesc is invalid - Cannot auto backtrace out
of library

Once the Iptr and Wdesc have been supplied, the debugger displays
the source code at the required location, and the full range of symbolic
features are available.

72 TDS 275 02 March 1991

288 14 idebug — debugger

|E| Change processor

This command changes to a different processor in the network. Specify
the processor number after the prompt:

New processor number ?

To determine the mapping between the processor number and the
processor name used in the configuration file, use the ‘K’ command.
If the processor exists the display is changed to provide information
about the specified processor. If the new processor's word length is
different from that of the previous processor, the start address is reset
to the bottom of memory.

If the processor is not in the configuration, the following message is
displayed:

Error : That processor number does not
exist

To abort the command press with no input.

If there is only one processor in the network you are informed of the
fact.

The cursor keys ([=] and [=]) can be used to scroll the list of pro-
cessors. changes to the preceding processor and [5] to the next
processor in the sequence. The processor sequence is the same as
that displayed by the ‘K’ command.

@ Quit

This command quits the debugger and returns to the operating system.
Once quit, the debugger cannot be used to debug the same program
without reloading the program unless a ‘network dump’ file has been
created. This is because using the debugger overwrites some of the
contents of the network.

72 TDS 275 02 March 1991

14.6 Monitor page commands 289

[R]

Run queues
This command displays Iptrs and Wdeses for processes waiting on

the processor’s active process queues. If both high and low priority
front process queues are empty, the following message is displayed:

Both process queues are empty
If neither queue is empty, you are required to specify the queue:
High or low priority process queue ? (H,L)

Type ‘B’ or ‘L’ as required. If only one queue is empty, the debugger
displays the non-empty queue.

The screen display is paged. To view other processes scroll the dis-
play using the [CURSOR UP|, [CURSOR DOWN], [LINE UP], [LINE DOWN],
[PAGE UP], and [PAGE DOWN] keys.

Note: In breakpoint mode this command may show the details of a
process more than once. The following string ‘< !>’ next to the queue
heading serves a reminder that this may occur.

Processes which belong to the debugging kemel are also displayed
and identified with the string ‘ (Runtime kernel)'.

Show debugging messages

This command is used to enable and disable debugging messages and
prompts. It invokes the following submenu:

Show Messages Menu

B -- Show message for breakpoints : ON
D -- Show debug messages : ON
E -- Show message for errors : ON
Q -- Quit

Which option (B,D,E,Q) ?

Options B and E control the display of prompts when a breakpoint or
error (via the library functions DEBUG . ASSERT and DEBUG. STOP)
is encountered. Disabling these options ensures that the debugger is
entered on a breakpoint or error without requesting confirmation.

72 TDS 275 02 March 1991

290 14 idebug — debugger

- Option D controls the display of debugging messages inserted with the
DEBUG.MESSAGE library function.

Timer queues
This command displays Iptrs, Wdescs, and wake-up times for pro-
cesses waiting on the processor's timer queues. Prompts and displays
are similar to those for the Run queue command.

TOP| Last instruction

This command is used to display the source corresponding to the last
instruction to be executed on the current processor. lt is the same as
typing ‘G, then ‘I".

Update registers

This command updates the clock and status display (e.g. runtime
queues) for the current processor. It enables you to monitor the activ-
ity of other processes while one process is stopped at a breakpoint or
error,

Process names

This command gives the process numbers corresponding process
names used in the configuration description. Process numbers must be
given when selecting specific processes for display by the debugger.

Note: The debugger displays only the first 19 characters of the process
name. If this is a problem you should make names unique within the
first 19 characters.

Note: This command is of limited use when used in conjunction with
the occam configurer occon£. This is because user processes can-
not have names assigned to them in the same manner as with the C
configurer icconf.

Write to memory

This command writes a value to a specified address. Values must be
specified in the current type (the type used in the previous Monitor page
Inspect command), or INT if the type was a CHAN or the Disassemble
or Hex options have been used after an Inspect.

72 TDS 275 02 March 1991

14.6 Monitor page commands 291

Exit

This command returns to symbolic mode and locates to the current
address.

Enter post-mortem debugging

This command allows the debugger to be switched into post-mortem
mode from breakpoint mode when the program crashes (a process
sets the error flag on any processor). Halted processors prevent the
breakpoint debugger from accessing the network correctly and debug-
ging must continue in post-mortem mode. It has the same effect as
re-invoking the debugger with the command line ‘M’ option.

If the program has not crashed, the debugger prompts for confirmation:
The program has not crashed - are you sure (¥,N) ?

If you have disabled checking of the subsystem error status (the com-
mand line ‘'S’ option), you are prompted with:

Unable to detect if the program has crashed -
are you sure (Y,N) ?

Typing 'Y’ continues the operation, typing 'N’ aborts it.

This command will only work if the subsystem is wired subs (see section
14.4.1). For a subsystem wired down, you will need to quit and restart
the debugger using the Monitor page ‘M’ command line option (instead
of the previous breakpoint command line ‘B’ option).

Note: State information for a process that has stopped (on breakpoint
or error) will be lost when switching from breakpoint to post-mortem
mode. If the information is important you should make a note of it
before switching modes.

72 TDS 275 02 March 1991

2

w

2 14 idebug — debugger

14.6.8 Symbolic-type commands

This command locates to the last instruction executed on the
current processor.

RELOCATE This command returns to symbolic mode and performs a sym-
bolic It cannot be used if the processor has been
changed at the Monitor page.

-
I I o
o

RETRACE This command returns to symbolic mode and performs a sym-
bolic It cannot be used if the processor has been
changed at the Monitor page.

o

HELP These commands display a summary of the commands avail-
able at the Monitor page.

This command refreshes the screen.

14.7 Symbolic functions

Symbolic debugging allows high level language programs to be debugged from
the identifiers used in the source code. Symbolic identifiers are the names given
in the program to variables, constants, channels, and functions.

Symbolic functions are invoked using keyboard function keys. Keyboard layouts
for common terminal types can be found in the rear of the Delivery Manual that
accompanies the release.

Symbolic debugging functions are listed in Table 14.4. Functions only available
in breakpoint mode are marked with a double dagger (1).

72 TDS 275 02 March 1991

fosd

Bildd
SHFT T4

ShFT 3
aeL s
CreL ¥o
CTRL A

ACT ¥2
AT TS

CTRL Entp

14,7 Symbolic functions

293

Function Description

Display the value and type of a source code symbol.
CHANNEL Locate to the process waiting on a channel.

TOP Locate back to the error, or last source code location.
RETRACE Retrace the last etc.

Locate back to the last location line.

= |30
Ep
9l |lo
£
=]
m

Display extra process information.

1 Change the value of a variable in memory.

[RESUME] § Resume the application program from the breakpoint.
Change to the Monitor page.

Locate to the procedure or function call.

HELP] Display a summary of utility key uses.

ET ADDRES

(9]

Display the location of a source line in memory.

Go to a specific line in the file.

EARC

Search for a specified string.

m

Change to an included file.

XIT FIL

Change to an enclosing file.

HANGE FILE

ol ([m (@ {[@] | 6] |6
Z O
= =
3 (18|12

mmIZ
[m

Display a ditferent source file.

TOP OF FILE Go to the first line in the file.
Go to the last line in the file.

TOGGLE BREAK] £

Set or clear a break on the current line.

INTERRUPT]

Force the debugger into the Monitor page without stop-
ping the program.

CONTINUE FROM| £

Resume the application program from the current line.

[TOGGLE HEX Enables/disables Hex-oriented display of constants and
variables.
Quit the debugger.

1 = Breakpoint mode only

72 TDS 275 02

Table 14.4 Debugger symbolic functions

March 1991

294

14 idebug — debugger

72 TDS 275 02

This function allows you to find the type and value of any occam
symbol. To inspect a symbol, use the cursor keys to position the
cursor on the required symbol and press INSPECT].

If the cursor is not on an occam symbol when you press
[[NSPECT], you are requested to specify a symbol name. Type
to abort the operation, or type a name followed
by [ENTER]. Spaces and the case of the letters in the name are
significant. If the symbol is an array, elements from the array
can be selected using constant integer subscripts enclosed in
square brackets ([and). If no subscripts were supplied, you
are prompted to supply them.

The symbol is checked that it is in scope with the line to which the
debugger last located. This may not be the same as the current
cursor position. If the symbol is not in scope at that location, or
not found at all, one of the following messages is displayed:

Name ‘symbol’ not in dynamic scope

Name ‘symbol’ not found

Information displayed

If the name is in scope, its type and value are displayed, together
with its address in memory. If it is an array, and subscripts were .
supplied, its type, value, and address are displayed. If it is a
short BYTE array, it is displayed in ASCIL. If it is any other type
of array, its dimensions are displayed. If it is a channel, and
is not empty, the Iptr and Wdesc of the process waiting for
communication, and its priority, are displayed. If it is a PROC or
FUNCTION name, its entry address, and nested workspace and
vectorspace requirements are displayed (no address is displayed
for library names). For protocol names and tags, timers, and
ports, only types are displayed.

If there is too much information to be displayed on one line, it is
displayed in two parts. The symbol's name and type is displayed
first, then after a short pause, its value and address.
Inspecting arrays

The debugger displays the size and type of the array, and
prompts for subscript values. For example:

[5]1 [4]INT ARRAY ‘a’, Subscripts ?

March 1991

14.7 Symbol

ic functions 295

{

Press to obtain the address of the array, or enter the
required subscripts, which must be in the correct range.

The subscripts should be typed either as decimal constant in-
teger values, or as integers separated by commas, for example
‘[31121°, or ‘3, 2'. Spaces are ignored.

To simplify access to values such as ‘a[i]’ you may type
‘a[1]1’; the ‘1" character is replaced by the value of the last
integer displayed.

Scrolling arrays

Instead of supplying subscripts for an array element, the debug-
ger allows you to scroll through the elements of an array while
inspecting in symbolic mode. It also allows you to see a short
‘'segment’ of a BYTE array; you can move this segment up and
down like a window into the array.

When asked for a subscript, you may a@nto the end (or
‘++ on its own; this assumes a subscript of zero). Then instead
of displaying only that element of the array, the debugger also
displays the following message on the second line of the screen:

Press [UP] or [DOWN] to scroll, any
other key to exit

You may use the [1] and [T], cursor keys to scroll through the
elements of the array. The debugger will not allow you to scroll
past the beginning or end of the array. Pressing any other key
will return you to normal symbolic mode.

/BYTE arrays-have another useful feature. If you add a single

‘+' to the subscripts, the debugger displays a ‘segment’ of 16

“~bytés starting at those subscripts. You may again scroll through

the array by using the and [1], cursor keys. As before, you
cannot scroll past the beginning or end of the array.

If you use a single ‘+" on a non-BYTE array, it behaves exactly
like ‘“++'.

72 TDS 275 02 March 1991

=

296

14 idebug — debugger

TOP

72 TDS 275 02

Inspecting memory

To inspect the contents of any location in memory, specify an
address rather than a symbol name. Type the address as a
decimal number, a hexadecimal number (preceded by ‘#'), or the
special short form %bh...h, which assumes the prefix #8000. ..
The debugger displays the contents of the word of memory at
that address, in both decimal and hexadecimal.

For more versatile displays of memory contents, use the func-
tions available at the ‘Monitor page’ (see section 14.6).

Inspecting placed channels

For channel variables that have been placed into a specific mem-
ory location the function displays both the address of
the location and its value.

Note: that this is a change from previous versions of idebug
where only the address was displayed.

Channels can be examined in detail using the [CHANNEL] function.

This function jumps down a channel if a process is waiting at
the other end. Use this key as you would INSPECT], but when
positioned on a channel. The debugger locates to the source line
corresponding to the waiting process from where the process can
be debugged. This function is invalid if the cursor is not on a
channel or the name specified is not a channel.

The function allows you to ‘jump’ to other processors
along transputer links. If a process running on another processor
is waiting for communication on a channel the debugger 'jumps
down’ the link and automatically changes to that processor.

This function locates back to the line containing the original error,
or to the line located to by the previous invocation of the Monitor
page ‘G’ or ‘0’ command.

This function locates back to the previous location. Repeated
use of [RETRACE] reverses the effect of successive [BACKTRACE],
CHANNEL], and operations.

March 1991

14.7 Symbolic functions 297

RELOCATE

HELP

MONITOR

LIEE

This function locates back to the last point located to by
the debugger. For example, it can be used to return to the
original source line of an error after browsing the code with
the cursor and scroll keys.

This function displays the Iptr and Wdesc of the last lo-
cation, the process name and priority, and the processor
number.

If the Wdesc is not in the defined region for a process the
message: Undefined process is displayed in place of
the process name. For single processor programs that have
not been configured there is no defined region and the mes-
sage. Stack area unknown is displayed to reflect this.

If a Wdesc has not been supplied, it is given as ‘invalid'.

This function searches forwards in the source file for a spe-
cific string. Either specify a search string or press
to accept the default, which is the last string specified.

This function displays a brief summary of the debugger sym-
bolic function keys.

This function recalls the Monitor page environment.

This function quits the debugger. The Monitor page ‘Q’ op-
tion has the same effect.

This function locates to the line where a procedure or func-
tion was called. If the debugger is already located in the
program's topmost procedure, no backtrace is possible.

GET ADDRESS | This function displays the address of the transputer code

which was compiled for the source line where the cursor is
currently placed.

CHANGE FILE| This function opens a different source file for reading only.

72 TDS 275 02

No symbolic functions are available, unlike the Monitor page
‘E” option.

March 1991

2

w0

8

14 idebug — debugger

TOGGLE HEX

INTERRUPT

ENTER FILE

[ENTER FILE]
GOTO LINE

TOP OF FILE

This function displays Hex values of non-occam vari-
ables as well as their decimal values. The default is to
display integral types in decimal format only.

This function does not apply to occam variables.

This function forces the debugger to enter the Monitor
page without stopping the program when breakpoint de-
bugging.

Note: This command does not operate if there are
keystrokes waiting before it in the keyboard buffers. It
may also fail if the application program is waiting for
input from the keyboard.

Note : A side effect of this command is that the de-
bugger suspends iserver communications in order
to preserve debugger output to the screen.

Enters an included file. Position the cursor on the rele-
vant # INCLUDE directive and press [ENTER FILE].

Exits from an open included file.

This function allows you to change to a particular line
in the source. Specify a line number, or type 0 (zero)
to abort the operation.

Moves to the start of the file.

[BOTTOM OF FILE| Moves to the end of the file.

72 TDS 275 02

March 1991

14.7 Symbolic functions 299

14.7.1 Breakpoint functions

[TOGGLE BREAK]

[CONTINUE FROM|

72 TDS 275 02

This function toggles a breakpoint on the source line
indicated by the cursor and provides information on
the breakpoint number (as used by the Monitor page
‘B’ command), whether it was set or cleared, and the
line number it is on.

When the source line the cursor is on produces no
associated object code the debugger displays an ex-
clamation mark (<!>) after the line number to indicate
that the breakpoint has been toggled on a different line
to the one the cursor is on (as shown at the bottom of
the display).

This function restarts the program from the breakpoint.
(To restart from an error use [CONTINUE FROM)).

This function restarts the program from the line indi-
cated by the cursor. should only be
used to bypass an erroneous source line. The result
of continuing from other points in the code may be un-
predictable if there are intervening stack adjustments.

This function is commonly used to continue a process
which has stopped on a program error, see 7.11.

This function changes the value of a variable in trans-
puter memory. Use this function as you would
to select a variable for modifying (press and
specify the name of the variable).

Specifying an empty string aborts the opera-
tion.

Once a variable is selected the debugger prompts for
a new value. The new value should be specified in the
expected occam type (as specified within the prompt)
although there are a few relaxations to this rule to al-
low for implicit casts when using the debugger (see
below). REAL32 and REAL64 values must be given
in the correct occam format.

March 1891

300

idebug — debugger

O The following occam types may be freely mixed to provide im-
plicit type casts so long as the value is defined within the desti-

nation type:

BOOL BYTE INT

INT32 INT64

The following are examples of valid modification values:

Destination Modify value
variable type

REAL32 42.0
INT64 TRUE

INT ‘a’

BOOL " %400
INT16 #A0

INT32 $1a

BYTE 42

The following are examples of invalid modification values:

72 TDS 275 02

Destination Modify value
variable type

REAL32 42

INT64 2.0

BOOL rxg02/
INT16 32768
BYTE =1

BYTE #100

March 1991

14.8 Error messages 301

14.8 Error messages

This section lists errors generated by idebug. Other messages not in this list
may be generated by corrupt files and by files not created by the toolset.
14.8.1 Out of memory errors

If the debugger runs out of memory when trying to read in information and the
offending item cannot be reduced in size, the amount of memory available to
the debugger may be increased by increasing the size of the memory on the
transputer the debugger is running on and updating IDEBUGSIZE accordingly.
14.8.2 If the debugger hangs

If the debugger starts up but then hangs with the message:

Loading network...
either of the following errors may have occurred:

1 The network connectivity is not correctly described in the configuration
description, for example, a link is not connected to a processor, or the
type of a processor has been specified incorrectly.

Network connectivity on a board can be checked by running a check
or worm program, such as the ispy program supplied with the board
support software for INMOS iq systems products. These products are
available separately from your local INMOS distributor.

2 You have set IDEBUGSIZE to be larger than the memory on the pro-
cessor where the debugger is running.

Change IDERUGSIZE to reflect the correct memory size.

14.8.3 Error message list

"filename” not compiled with full symbolic debug information
The object code module does not contain sufficient debug information
for the debugger to locate to its corresponding source code (i.e. it con-

tains minimal debug information). Recompile the module and rebuild the
program in order to debug it symbolically.

72 TDS 275 02 March 1991

302 14 idebug — debugger

Already located - No process is waiting at the other end of this link

An attempt to jump down a hard channel (link) has failed because there
is no process waiting at the other end.

Attempted read outside Parameter block
Attempted write outside Parameter block

The configuration system has become corrupted. Check hardware using
amemory check program such as ispy. (The ispy program is supplied
as part of the board support software for INMOS iq systems products.
These products are available separately from your local INMOS distribu-
tor.)

Can only specify a transputer type if bootable is for a class

You have tried to specify a processor type when the bootable file is
already for a specific processor type.

Cannot create network dump - reason

Creation of a network dump file is not permitted on a program that is, or
has been, breakpointed.

reason can be either of the following:

1 Not for breakpoint postmortem — invalid when post-mortem
debugging a breakpoint debug session.

2 Not while breakpointing - invalid in breakpoint mode.
Cannot find this line’s location
Either of the following has occurred:

1 You have moved the cursor beyond the end of the current source
file for which there is no executable code.

2 The compiler has optimised the executable code out.
Cannot locate beyond Freespace area

The address specified is not within the memory map range of the pro-
cessor.

72 TDS 275 02 March 1991

14.8 Error messages 303

Cannot locate to area (Iptr: #address)

The address specified is not within the code area for the program on
the processor. area can be any of the following:

Reserved transputer memory
Runtime kernel
Configuration code area
Vectorspace area

Static area

Heap area

Freespace area

Cannot open "filename”

Either the file does not exist or it is not on the ISEARCH path (note that
by default this includes the current directory). The ilist tool can be
used to confirm this. (e.g. ilist filename).

Cannot read processor number (Txxx)

The debugger cannot communicate with that processor. Any of the fol-
lowing errors may have occurred:

1) The root processaor's core dump has been incorrectly specified.

2) The debugger has failed to analyse the network correctly. Either
you have failed to specify the ‘A’ option or the system control
signals are wired incorrectly.

3) The network does not match that specified in the configuration
file. Check network connectivity using a check program such as
ispy. (The ispy program is supplied as part of the board sup-
port software for INMOS iq systems products. These products
are available separately from your local INMOS distributor.)

Cannot run application — the program has crashed !

Use the ‘Y’ (Enter post-mortem debugging) command to post-mortem
debug the (now defunct) breakpoint session.

Channel is invalid

The channel does not point to a known process executing on the pro-
cessor.

72 TDS 275 02 March 1991

304 14 idebug — debugger

Compiler complains that any of the following debug support functions are
not found:

DEBUG.ASSERT
DEBUG.STOP
DEBUG.MESSAGE
DEBUG.TIMER

You have omitted the #USE "debug.1lib" directive required to incor-
porate the debug support functions.

Configuration info inconsistent with linked unit

You have probably relinked a component of a program and forgotten to
reconfigure it.

Configured for post-mortem debugging only

You have explicitly disabled interactive debugging (either via configurer
or collector options).

Debug info too large (reason)

The debugging information for a particular compilation module is too large
for the debugger. Either reduce the size of the offending module or
increase the size of memory on the processor where the debugger is
running (see section 14.8.1 on how to overcome this).
reason can be any of the following:

ix.tags is full

ws.array is full
name table is full

Debugger incompatible configuration file ”filename”

The meaning of this error message depends on which configurer you
have used:

occonf

You have configured your program with the configurer ‘RE’ option to en-
able memory layout re-ordering.

72 TDS 275 02 March 1991

14.8 Error messages 305

icconf
You have configured your program without specifying the debugger com-
patible option (‘G option) to the configurer (this option disables code
segment re-ordering).

Debugger incompatible ROM configuration file "filename”

You have configured your program to be ROM-loadable. The debugger
can only debug bootable programs.

Duplicate debugger modes: message
Mutually incompatible options have been specified on the command line.
File has changed since configuration ”filename”
You should rebuild the program again.
FILE IS TOO BIG - truncated
The debugger buffer capacity has been exceeded. The buffer contains
as much of the file as could be read before the capacity was exceeded
(see section 14.8.1 on how to overcome this).
lllegal virtual channel address
The channel has been (possibly incorrectly) tagged as virtual but does
not point to a valid virtual channel (as defined by the debugging ker-
nel). This is caused by a channel that has become corrupted (normally
by overwriting the location of the channel). You should ensure that no
compiler checks have been disabled to prevent accidental corruption.
Interactive debugging has disabled
The module has been linked with the linker ‘Y’ option to disable break-
point (interactive) debugging. Rebuild your program without disabling
interactive debugging and retry.

ITERM error on line linenumber, message

The debugger has detected a syntax error in the ITERM file. message
describes the error.

72 TDS 275 02 March 1991

306 14 idebug — debugger

Name symbol is not in dynamic scope
The symbol symbol exists in the module, but is not in scope from where
the debugger last located to. In order to inspect the symbol you must
locate to a new position where the symbol is in scope.

No need to assert Subsystem Analyse
The ‘A’ option is not required when you specify options ‘N’ or ‘D",

Not a (compatible) bootable file "filename”

The file is either a non-bootable file or a pre-product release bootable
file. Use ilist to determine the contents of the file if in doubt.

Not enough free memory for the debugger

You have either not set the environment variable IDEBUGSIZE or you
have set it to be too small (it should be > 400K).

Change the variable to reflect the memory size of the root processor.
Not on a valid #INCLUDE line

You may only use [ENTER FILE] when the cursor is on a line with a
#INCLUDE directive.

Only debugging tools and cursor keys are available
You have pressed a key which is not defined.

Option must be followed by a link number (0 - 3)
Options ‘B’, ‘M, and ‘T’ require a link number in the range 0 - 3.

Option must be followed by a valid Processor type (eg. T425)
The processor type supplied is not recognised by the debugger.

(Probe Go) : Processor number - Cannot contact
The debugger is unable to communicate with processor number. The
processor type specified in the configuration (or to the debugger via the
‘C’ option) does not match that found. Check the network using a pro-

gram such as ispy in order to determine the correct processor type.
(The ispy program is supplied as part of the board support software for

72 TDS 275 02 March 1991

14.8 Error messages 307

INMOS iq systems products. These products are available separately
from your local INMOS distributor.)

(Probe Go) : Processor number - Incorrect processor type
The processor type specified in the configuration (or to the debugger via
the ‘C’ option) does not match that found. Check the network using a
program such as ispy in order to determine the correct processor type.
(Probe Resume) : Processor number - Invalid Breakpoint
The debugger has stopped at a breakpoint which it did not place in the
code. If you wish to continue executing the program set a breakpoint at
the same address and retry the command. (See section 7.18.12).
Processor number: insufficient memory, require at least number bytes
The memory requirement of the processor as specified to the configurer,
collector, orin IBOARDSIZE (as appropriate) is too small. (Note that the
value displayed may include memory for some configuration code that is

reclaimed when program starts executing).

This may also be caused by the debugging Runtime kernel using an extra
10-14K of memory.

Processor type must be a 32 bit processor (eg. T425)

You must specify a 32 bit processor type because processor classes are
for 32 bit processors only.

Processor type must be not abbreviated
You must specify specific processor types rather than abbreviated types
(e.g. T425 rather than T5) because some abbreviated types cover more
than one specific type.

READ ERROR - truncated

The debugger could not read all of the file. The buffer contains as much
of the file as could be read (see section 14.8.1 on how to overcome this).

Runtime kernel is not present (or has been overwritten)

Either the runtime kernel has been corrupted or you are trying to post-
mortem a breakpoint session that didn't cccur.

72 TDS 275 02 March 1991

308 14 idebug — debugger

There is no enclosing #INCLUDE

You have attempted to use when not located in a nested include
file.

There are no processes waiting at either end of this link

An attempt to jump down a hard channel (link) has failed because there
are no processes waiting at either end.

This transputer link is connected to the host

The link specified in the ‘B, ‘M, and “T" option is the communication link
from the debugger to the host and is not connected to the network.

Too many processes declared at configuration level (number)
Too many processes used at configuration level (number)

The debugger requires more memory in order to operate on this many
processes (see section 14.8.1 on how to overcome this).

Too many processors - There is only enough room for (number)

The debugger requires more memory in order to operate on this many
processors (see section 14.8.1 on how to overcome this).

Unable to read iterm environment variable

There is no translation for the ITERM environment variable which defines
the screen and keyboard format.

Unable to toggle a breakpoint on this line
The breakpoint cannot be set or cleared on this source line. Either:
1 The current file contains no executable code or
2 Executable code is contained in an include file and the debugger
cannot determine whether you mean to toggle the breakpoint in

that file or in the current file.

Move to the line where you really want to toggle the breakpoint and retry
the command.

72 TDS 275 02 March 1991

14.8 Error messages 309

Unknown core dump format filename

The network dump file is in the wrong format or the wrong file has spec-
ified.

Wdesc is invalid - message

The Wdesc supplied is invalid: this may be deliberate because it is
unknown. If you supplied it from the Monitor page environment, retry the
command with a valid Wdesec.

message can be one of:

cannot inspect variables

cannot modify variables

cannot backtrace

cannot auto backtrace out of library

Wrong number of processors in network dump file filename

The number of processors does not correspond to the current program.
The wrong network dump file may have been specified.

You cannot backtrace from here (to configuration code)

This normally occurs when you try to backtrace from the program'’s top-
most procedure into the bootstrap routine which is not supported sym-
bolically by the debugger (i.e. the configuration code area).

You cannot backtrace from here (to Iptr: #nnn, Wdesc: #mmm)

An attempt to backtrace from a procedure or function has failed because
the resultant process details are invalid (e.g. Iptr is not in the Code
area).

The Iptr and Wdesc shown are those of the invalid process which
supposedly called the current procedure or function.

If you suspect that this is not the case you should use before
backtracing to check that the current process details are valid. (They are
normally only invalid when incorrect process details have been specified
with the Monitor page ‘0’ command). Corruption of the stack (workspace)
is another possible cause; you should ensure that no compiler checks
have been disabled to prevent accidental corruption.

72 TDS 275 02 March 1991

310 14 idebug — debugger

You have changed file, so you can't use this key
There are certain symbolic features that you may not do if you have
changed file. Either press before retrying the command or
relocate to the file from the Monitor page using the ‘F" (Select file) com-
mand.

You must specify a filename
The command line syntax requires a filename.

You must specify a transputer type (instead of a class)

The program you are trying to debug is for a transputer class (either TA or
TB); the debugger needs to know the actual processor type (e.g. T425).

You should retry using the debugger with the command line 'C’ option to
specify the appropriate processor type.

You must specify the application boardsize in IBOARDSIZE to be <=
#10000

On a T2 the maximum memory size is 64K (#10000).

72 TDS 275 02 March 1991

15 idump — memory
dumper

This chapter describes the memory dumper tool idump that dumps the contents
of the root processor's memory to disk. It is usad to enable the debugging of
code running on the root transputer.

15.1 Introduction
The memory dumper allows programs that use the root transputer to be de-
bugged in the normal way using the debugger tool idebug. It is required be-

cause idebug runs on the root transputer and overwrites all code and code in
its memory.

idump saves the contents of the root transputer to a disk file in a format that can
be read by the debugger. Information contained in the file allows the debugger
to analyse data in the root transputer in the same manner as other transputers
on the network.

When idump is invoked it calls the server with the ‘SA’ option so that the space
occupied by the dumper program is saved before it is loaded onto the transputer.

15.2 Running the memory dumper

To invoke the idump tool, use the following command line:
[2 idump filename memorysize {startoffset length}

where: filename is the name of the dump file to be created.

memorysize is the number of bytes, starting at the bottom of memory, to
be written to the file.

startoffset is an offset in bytes from the start of memory.

length is the amount of memory in bytes, starting at startoffset, to be
dumped in addition to memorysize.

All parameters can be expressed in either decimal or in hexadecimal format.
Hexadecimal numbers must be preceded by the hash # character or the dollar
sign $.

72 TDS 275 02 March 1991

312 15 idump — memory dumper

The memory dump file stores the contents of the transputer’s registers and the
first memorysize bytes of memory. The file is given the .dmp extension. After
the dump has been performed idump remains resident on the transputer board
ready to load the debugger.

memorysize must be large enough to contain the complete program with its
workspace and vectorspace. If the program to be dumped uses the free memory
buffer, the whole of the transputer board’s memory should be dumped.

Further portions of memory can be dumped by specifying the start of the segment
of memory to be dumped and the number of bytes, using pairs of startoffset
length parameters. The start address is given by startoffset and the number of
bytes by length.

The overall size of the memory dump file is given by the amount of memory
saved plus around 500 bytes for the register contents.

15.2.1 Example of use
Assuming an IBOARDSIZE of 100000:

idump core 100000

15.3 Error messages

Badly formed command line
Command line error. The command syntax requires a file name followed
by the number of bytes of memory to dump. Check the syntax of the
command and retry.

Cannot open file

File system error. The memory dump file could not be opened on the
host system.

Cannot write file

File system error. The memory dump file could not be written to the host
system.

72 TDS 275 02 March 1991

15.3 Error messages 313

You must tell the server to peek the transputer
idump has been invoked by calling the host file server with the incorrect

option. This error can only occur if the tool is not invoked with the supplied
executable file idump. exe.

72 TDS 275 02 March 1991

314 15 idump — memory dumper

72 TDS 275 02 March 1991

16 iemit — Memory
configurer

This chapter describes the Memory Configuration tool iemit. This tool can be
used interactively to enable the user to explore the effects of changes in the
memory interface parameters of certain 32 bit transputers. The tool can also
be used in batch mode to create ASCII or PostScript files. The tool produces
a memory configuration file which may be included as an input file to ieprom
and blown into EPROM along with a ROM-bootable application file.

The chapter describes how to use iemit and outlines its capabilities. Example
displays are provided followed by a list of error messages which the tool may
generate. The format of the memory configuration file is described and an ex-
ample is given. Note: memory configuration files are simple text files which may
be created manually using a standard editor or generated by using iemit.

Finally the chapter describes a tool called ievemit. This tool is provided to
convert memory configuration files produced by iemi (a previous version of
iemit), to the file format recognised by the current release of iemit and
ieprom. The command line syntax is described and a list of possible error
messages is given.

16.1 Introduction

The IMS T400, T414, T425, T800 and the T805 transputers have a configurable
external memory interface which allows a variety of types of memory device to
be connected using few extra components.

For these transputers, the interface configuration may be selected by cne of two
mechanisms. The user may select one of the 17 standard memory configurations
(13 for the T414) or a customised memory configuration may be loaded from a
ROM or PAL on reset.

Both methods of memory configuration are available when booting from ROM
or from link. If the transputer is being booted from ROM, a customised memory
configuration may be added to the ROM or a standard configuration may be
used. If the transputer is booted from link a standard configuration may be used
at no extra cost, or a dedicated ROM or PAL may be added for a customised
configuration.

In order to generate a customised configuration the user may create a mem-
ory configuration file, describing the memory configuration and have this blown
into an EPROM. The configuration chosen is made known to the transputer by

72 TDS 275 02 March 1991

316 16 iemit — Memory configurer

simple board level connections which are detected by the transputer on reset.
If a standard configuration is required the MemConfig pin is connected to the
appropriate address pin. For example, standard configuration 7 is selected via
address pin MemAD?7. If a customised configuration is required the MemConfig
pin is connected though an invertor to the appropriate data line, usually this is
MemnotWrDO. Note: when iemit is used to generate the memory configura-
tion, the MemnotWrDO pin must be used. For further details see The Transputer
Databook 72 TRN 203 01.

The external memory interface configuration tool iemit produces timing dia-
grams for potential configurations of the memory interface and warns of possible
errors in the design. It indicates whether one of the preset configurations that
are available would be suitable, or whether it would be necessary to use an
externally programmed configuration.

Note: That it is assumed that readers creating memory configuration files are
familiar with the memory interface of the processor that they are using. The
stages in designing a memory interface, including examples, are described in

chapter 2 of The Transputer Applications Notebook - Systems and Performance.
Further information may also be found in The Transputer Databook.

16.2 Running iemit
The iemit tool can be invoked by the following command line:
B iemit options

where: options is a list of one or more options from table 16.1.

Options are preceded by ‘-’ for UNIX based tooclsets and */’ for MS-
DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving
the command syntax.

72 TDS 275 02 March 1991

16.2 Running iemit 317

Option | Description

A Produce ASCII output file.

E Invoke interactive mode.

F filename | Specify input memory configuration file.

I Select verbose mode. In this mode the user will receive sta-
tus information about what the tool is doing during operation for
example, reading or writing to a file.

O filename | Specify output filename.

P Produce PostScript output file.

Table 16.1 iemit command line options

Note: that if option ‘E’ is selected i.e. interactive mode, then no other cptions
may be specified on the command line.

The operation of iemit in terms of standard file extensions is shown below:

e
iemit

Examples of use

iemit may be invoked in interactive mode by using one of the following com-
mands:

iemit -e (UNIX based toolsets)
iemit /e (MS-DOS and VMS based toolsets)

Output files in ASCII or PostScript may be specified by command options from

within interactive mode; alternatively iemit may be invoked in batch mode, to
create an output file in one of these formats.

72 TDS 275 02 March 1991

318 16 iemit — Memory configurer

When the tool is invoked in batch mode to produce an output file in either ASCII
or PostScript format, then an input file must be supplied using the ‘& option. It
is also mandatory to specify either the ‘A’ or ‘P’ option. If the ‘O’ parameter is
not supplied then an output filename will be constructed, from the input filename,
with an extension of ‘. PS’ for a PostScript output, or ‘. ASC’ for an ASCII output.

Example:

The following commands cause iemit to produce an output file in PostScript
format. The tool is invoked in verbose mode.

UNIX based toolsets:

iemit -i -p -f memconfig.mem -o waveform.ps
MS-DOS and VMS based toolsets:

iemit /i /p /f memconfig.mem /o waveform.ps

Note: iemit will make use of the ITERM host environment variable, if it is
available, otherwise it will use defaults.

16.3 Output files
Two different types of output may be produced by iemit, these are listed below:

» A memory configuration file suitable for including as an input file to the
ieprom tool.

e An output file in either ASCII or Postscript format, suitable for inclusion
in documentation.

The tool may be used interactively to produce a memory configuration file in text
format. This file may then be used as an input file to the ieprom tool, thus
enabling the memory configuration to be stored on ROM. iemit is capable of
saving and reloading configurations to allow for design over an extended period
and for comparison of different configurations. The memory configuration file is
described and an example is given in section 16.7.

Additionally iemit may be used to produce an output file which is either a plain
ASCII file containing timing data or a file in PostScript format containing waveform
diagrams. These formats were chosen so that the results of the program could
be easily included in reports or other documentation.

72 TDS 275 02 March 1991

16.4 Interactive operation 319

16.4 Interactive operation

When iemit is invoked in interactive mode the program will power up with the
default standard configuration 31.

The tool’s user interface is presented as a number of display pages showing
timing data. The displays may be updated by changing the timing parameters,
which are accessed from page 1. All inputs are executed immediately so that
the user can see the effect on any of the displays. As each page is shown, the
user has the option of selecting another page for display by keying in its number.
The current configuration may be saved at any time to a specified output file.

The information displayed and options available on each page are described
below.

16.4.1 Page 0

This page acts as an index to the others. It shows the title of each page and
permits the selection of one of them. An option is provided to enable an input file
to initialise the memory configuration. Other options enable the user to selectively
generate output files. Options are listed in table 16.2 and an example of the
display page is given in figure 16.1.

The user enters an option code followed by the key. If a file option is
specified the user will be prompted for a filename. Note: file extensions should
be specified, there are no defaults.

16.4.2 Page 1

This page shows the input parameters to iemit. Itis from these parameters that
the tool computes the timing information and the waveforms. Only one parameter
may be changed at a time and the display data is immediately updated. An
example of the display page is given in figure 16.2.

When the page is displayed, the user has the option to select a new page by
entering its number, or entering C to change one of the parameters. In the latter
case, a list of parameter identifiers is displayed (see table 16.3) and the user is a
prompted to select one. The user may then specify a new value, or by pressing
the key, leave the current selection unchanged. The parameters used
for modifying the timing data are described in tables 16.4, 16.5 and 16.6.

Note: that there are two parameters displayed on page 1 which are updated by

iemit but which cannot be directly updated by the user; they are the EMI clock
period Tm and the Wait states (see tables 16.5 and 16.8).

72 TDS 275 02 March 1991

320 16 iemit — Memory configurer

Option | Description

1 to 6| Selects the page to be displayed.

] Save configuration to a file. The program prompts for the name of
a file to which the data will be written, by convention the extension
.MEM should be used. Output is a memory configuration file. An
error is reported if the data could not be saved. The save file is
given comments in its header indicating that it was created by the
iemit program.

L Load previously saved configuration. A filename is prompted for,
and the configuration saved in that file is read in and the display
data is updated. The program expects a memory configuration file.

If loading does not succeed because the file has a bad format, the
current configuration is reset to standard configuration 31. If load-
ing fails because the file could not be found or could not be opened
for reading, the load is abandoned without losing the current con-
figuration.

A Output pages in ASCII format to a file. The program prompts for
the name of a file to which the data will be written. Output is in
plain ASCII format with a form feed (FF) character after each page.
It includes full timing information and a representation of the timing
diagrams for read and write cycles. An error is reported if the output
could not be written.

P Generate PostScript file. The program prompts for a filename. The
program writes to the file a program in the PostScript page descrip-
tion language to draw the timing diagrams for the chosen memory
interface configuration. The waveforms shown are the same as
those which can be seen by selecting pages 4 and 5.

The file produced fully conforms to the PostScript structuring con-
ventions, allowing it to be processed by other programs. The dia-
gram is designed to fit lengthways on an A4 page, and is suitable
for inclusion in technical notes and reports. The file can be sent
directly to an Apple LaserWriter or other PostScript output device.

Q Quit - selection of this option exits the program.

Table 16.2 iemit page 0 options

72 TDS 275 02 March 1991

16.4 Interactive operation

321

Parameter | Parameter
identifier
0 to 6 | Page to be displayed

D Device type
Tl Address setup time before address valid strobe
T2 Address hold time after address valid strobe
T3 Read cycle tristate or write data setup
T4 Extendible data setup time
T5 Read or write data
T6 End tristate or data hold
{o] Nonprogrammable strobe “notMemSG0”
s1 Programmable strobe “notMemS1”
s2 Programmable strobe “notMemS2”
s3 Programmable strobe “notMemS3”
sS4 Programmable strobe “notMemS4”
RS Read cycle strobe name
WS Write cycle strobe name
R Refresh period
WM Write mode
W Memwait input connection
c Standard configuration

Table 16.3 iemit page 1 parameter identifiers

72 TDS 275 02

March 1991

322 16 iemit — Memory configurer

Parameter Description

Device type This parameter enables the program to deduce
the time taken for a half cycle of the signal
ProcClockOut: this is Tm, the basic unit of
time of the memory interface. A menu of the
available devices is displayed and the user is
invited to select one:

T400-20 T800-17
T414-15 T800-20
T414-17 T800-22
T414-20 T800-25
T425-17 T800-30
T425-20 T800-35
T425-25 T805-25
T425-30 T805-30
Tstates T1-Té6 The length of each Tstate T1 to T6, is entered

as a number of Tm periods between 1 and 4.
(2 Tm periods = 1 clock cycle).

Programmable The programmed durations of the strobes not-
Strobes S0-S4 MemS0 to notMem$S4. The strobes each have
two names which can be altered. One which
can be up to 9 characters in length, and one
consisting of just one character. There should
be no embedded spaces in the long names.
The short names are used in the timing infor-
mation on pages 2 and 3, while the long names
are used to label the waveforms on pages 4
and 5, and in the PostScript output. The signal
names are initialised to sensible defaults.

Note: that SO is a fixed strobe, so its duration
cannot be changed. The duration of a strobe
can be 0 to 31 Tm periods. If the value for
S1 is set to zero, then notMemS1 stays high
throughout the cycle; if the value for S2, S3 or
S4 is set to zero, then the strobe is low for the
duration of the cycle.

Table 16.4 iemit page 1 parameters

72 TDS 275 02 March 1991

16.4 Interactive operation 323

Parameter

Description

Read strobe name

The names for the read strobe notMemRd can be
altered.

Write strobe name

The names for the write strobe notMemWrB can
be altered. Note that because the four byte write
strobes have the same timing, only one is consid-
ered.

Refresh period

The refresh period is given as a number of Clockin
periods (18, 36, 54, or 72) or as Refresh Off if zero
is selected.

Write mode

The write mode can be set to Early or Late to suit
the type of memory being used.

Wait connection

The MemWait input may be connected to one of
the strobes S2, S3, S4 by entering ‘S2’, ‘S3’ or 'S4’
respectively. Alternatively, by specifying a number
in the range 1 to 60 MemWait may be connected
to a simulated external wait state generator. This
causes MemWait to be held high then to become
inactive (low) a set number of Tm periods after the
start of T2. Note: that this mode is not supported
directly by the T414; in a final design, a circuit
would have to be built to perform this function.

If the current connection of MemWait causes the
signal to become inactive just as ProcClockOut
is falling during T4, a warning is given that there
is a hazard of a wait race condition. This is be-
cause MemWait is sampled on the falling edge
of ProcClockOut - and if the signal is changing
while being sampled, the result is undefined.

EMI clock period Tm

The value of Tm for a clockin frequency of SMHz.
This is computed from the other parameters and
displayed.

Table 16.5 iemit page 1 parameters

72 TDS 275 02

March 1991

324 16 iemit — Memory configurer

Parameter Description

Wait states The number of wait states in the current configura-
tion. This is computed from the other parameters
and displayed.

Standard The parameters can all be reset to those for one of
configuration | the built in configurations. There are 13 standard
configurations available for the T414, valid configu-
ration numbers being 0 to 11 and 31. For the T400,
T425, T800 and the T805 there are 17 standard
configurations available, valid configuration num-
bers being 0 to 15 and 31. If the user selects, for
a T414, one of the four configurations which are
not available, a message will be displayed indicat-
ing that this configuration may not be hardwired on
a T414.

If the currently set configuration happens to corre-
spond exactly to one of the preset configurations,
the tool reports the fact.

Table 16.6 iemit page 1 parameters

16.4.3 Page 2

This page shows general timing information for the interface, such as delays
between various strobes and required access times of the memory devices to
be used. The user should adjust these figures to allow for delays in external
logic.

Table 16.7 lists the timing information displayed on this page while an example
of the display is given in figure 16.3.

72 TDS 275 02 March 1991

16.4 Interactive operation

325

JEDEC symbol

Parameter description

TOLOL

TAVQV
ToLQv
TrLQV
TAVOL
TOLAX
TrHQX
TrHQZ
TOLOH
TOHOL
TrLrH
TrLOH
TOLwL
TDVwL
TwLDX
TwHDX
TwLwH
TwLOH

Cycle time (in both nanoseconds and processor
cycles)

Address access time

Access time from notMemS0
Access time from notMemRd
Address setup time

Address hold time

Read data hold time

Read data turn off
notMemS0 pulse width low
notMemS0 pulse width high
notMemRd pulse width low
Effective notMemRd width
notMemS0 to notMemWrB delay
Write data setup time

Write data hold time 1

Write data hold time 2

Write pulse width

Effective notMemWrB width

Table 16.7 General timing parameters

The total cycle time is given in nanoseconds and in processor clock cycles. The
only option available from this page is to select another page for display.

72 TDS 275 02

March 1991

326 16 iemit — Memory configurer

16.4.4 Page 3

This page gives timing information of special interest to designers working with
dynamic memory, including various access times and the time for 256 refresh
cycles. With this information the designer can ensure that the requirements of
the memory devices to be used are met. The user should adjust these figures to
allow for delays in external logic. Table 16.8 lists the DRAM timing parameters.

JEDEC symbol | Parameter description
T1L1H notMemS1 pulse width
T1H1L notMemsS1 precharge time
T3L3H notMemsS3 pulse width
T3H3L notMemS3 precharge time
TiL2L notMemS1 to notMemS2 delay
T2L3L notMemS2 to notMemS3 delay
T1L3L notMemS1 to notMemS3 delay
TiLQV Access time from notMemS1
T2LQV Access time from notMemS2
T3LQV Access time from notMemS3
T3L1H notMemS1 hold (from notMemS3)
T1L3H notMemsS3 hold (from notMemS1)
TwL3H notMemWrB to notMemS3 lead time
TwL1H notMemWrB to notMemS1 lead time
TiLwH notMemWrB hold (from notMemS1)
T1LDX Write data hold from notMemS1
T3HQZ Read data turn off
TRFSH Time for 256 refresh cycles (in microseconds)

Table 16.8 DRAM timing parameters

The only option available from this page is to select another page for display. An
example of the display is given in figure 16.4.

72 TDS 275 02 March 1991

16.4 Interactive operation 327

16.4.5 Page 4

This page shows graphically the timing for a memory read cycle. An example of
the display page is given in figure 16.5.

The Tstates and strobes are labelled, and bus activity is shown. The point where
data are latched into the processor is also indicated.

At the top of the page is displayed the processor clock and the Tstates, a number
indicating the Tstate, 'W' indicating a wait state, and 'E’ indicating a state that is
inserted to ensure that T1 starts on a rising edge of the processor clock.

Below this are displayed the waveforms of the programmable strobes and the
read, write and address/data strobes. Each of these strobes is labelled with the
corresponding label parameter.

The point at which the read data is latched is indicated by a '+’ beneath the read
cycle address/data strobe.

The MemWait waveform shows the input to the MemWait pin. If the wait input
is a number then it goes low n Tm pericds after the end of T1 and high again
at the end of T6, if the wait input is connected to a strobe it goes low and then
high when that strobe does so.

If the cycle is too long to fit horizontally on the screen, it may be scrolled left

and right using the L. and R options. The displayed area moves by about 15
characters each time these options are used.

16.4.6 Page 5

Page 5 shows the waveforms for a memory write cycle. The display is similar
to that of page 4, indeed the read and write cycle diagrams are combined when
the PostScript output is produced.

Scrolling the display to the left or right is permitted in the same way as for page
4.

An example of the display page is given in figure 16.6.

72 TDS 275 02 March 1991

328 16 iemit — Memory configurer

16.4.7 Page 6

This page gives a configuration table for the current configuration. This is a
listing of the data which have to be placed in a ROM situated at the top of the
transputer’'s memory map in order to achieve the desired configuration. The table
consists of 36 words of data, but only the least significant bit in each is used. The
address and contents are given for each location. Note: when iemit is used
to generate the memory configuration, the Memconfig pin must be connected
to MemnotWrDO.

An example of the display page is given in figure 16.7.
Note: that if page 1 indicates that the configuration is one of the transputer's

preset ones, there will be no need for a ROM; configuration can be achieved by
connecting the MemConfig pin of the device to one of the address/data lines.

16.5 Example iemit display pages

~ N

Page 0 T414/T800 External Memory Interface Program

Page 0: Index - this page
1: EMI configuration parameters
: General timing
: Dynamic RAM timing
: Read cycle waveforms
: Write cycle waveforms
: Configuration table

AU e wNn

Please enter 1...6 to see a new page;
<S> to save configuration to a file;
<L> to load a saved configuration;
<A> to generate an ASCII listing of all pages to a file;
<P> to generate PostScript file of waveforms;
<Q> to exit the program

N /

Figure 16.1 Example iemit display page 0

72 TDS 275 02 March 1991

16.5 Example iemit display pages

329

/’

\Wr!. te mode Late

Page 1 EMI Configuration Parameters

Davice type T414-20

EMI clock peried (Tm) 25 ns at ClockIn

= 5MHz

Wait st 8 0

Address setup time Tl: 1 periods Tm

Address hold time T2: 1 periods Tm

Read cycle tristate/Write data setup T3: 1 periods Tm

Extended for wait T4: 1 periods Tm

Read or write data T5: 1 periods Tm

End tristate / Data hold TE: 1 periods Tm

Non-Programmable strobe "notMemSO " "0" S0

Programmable strobe "notMemSl " "1" Sl: 30 periods Tm

Programmable strobe "notMemS2 " "2" S2: 1 periods Tm

Programmable stroba "notMemS3 " "3" 83: 3 periods Tm

Programmable strobe "notMemS4 " "4" S54: 5 periods Tm

Read cycle strobe "notMemRd " "r"

Write cycle strobe "notMemWrB" "w"

Refresh pericd 72 clockin periods Wait]
Configuration 0

Figure 16.2 Example iemit display page 1

-

Page 2 General Times

EEmEsmse—————
Symbol Parameter

TOLOL Cycle time 1s0
TAVQV Address access time -
TOLQV Access time from 0 -
TrLgQvV Access time from r -

TAVOL Addr setup time 25
TOLAX Address hold time 25
TrHQX Read data hold time o
TrHQZ Read data turn off =
TOLOH 0 pulse width low 100
TOHOL 0 pulse width high 50
TrLrH r pulse width low 50
TrLOH Effective r width 50
TOLWL 0 to w delay 50

TDVwL Write data setup time 25
TWwLDX Write data hold time 1 15
TwHDX Write data hold time 2 25
TwLwH TWrite pulse width 50
\TwLDE Effective w width 50

min (ns) max(ns)

125
1o00
50

25

= 3 processor cycles

notes

Figure 16.3 Example 1emit display page 2

72 TDS 275 02

March 1991

330

16 iemit — Memory configurer

\

Page 3 Dram Times

Symbol Parameter min(ns) max(ns) notes

T1L1H 1 pulse width 125

T1HIL 1 precharge time 25 =

T3L3H 3 pulse width 25 -

T3H3L 3 precharge time 125 -

T1L2L 1 to 2 delay 25 -

T2L3L 2 to 3 delay 50 -

T1L3L 1 to 3 delay 5 75

T1LQV Access time from 1 - 100

T2LQV Access time from 2 - 75

T3ILQV Access time from 3 - 25

T3L1H 1 hold (from 3) 50 -

T1L3H 3 hold (from 1) 100 -

TwL3H w to 3 lead time 50 -

TwLlH w to 1 lead time 75 =

TllwH w hold (from 1) 100 -

T1LDX Wr data hold from 1 125 =

T3HQZ Read data turn off - 25
\\\TRFSH 256 refresh cycles - 3650 Time is in microseconds ‘//

Figure 16.4 Example iemit display page 3

/

Page 4

MemWait

MemAD

notMemS0 0)= \

11 2]

ProcCleck / \ /

notMemSl 1)= \

notMemsS2 2)= \,

notMemsS3 3)=

notMemsS4d 4)=

READ CYCLE
Pmmmmm e < >=<
"Read data latched here

e J

\nntlhmkd. ()=

A\

Figure 16.5 Example iemit display page 4

72 TDS 275 02

March 1991

16.5 Example iemit display pages 331

. ™

Page 5 1 121 2| 31 4| 51 €]
ProcClock / \ / \, ' \ /
notMems0 0)= \ /
notMemsl 1)= |\

notMems2 2)= \ /A
notMemsS3 3)= \ /

notMemS4 4)=

MemWait \, !
WRITE CYCLE
MemAD X X

\notnemw:B =\ - /

Figure 16.6 Example iemit display page 5

4 N

Page 6 Configuration Table
S

#7FFFFF6C 0 #7FFFFFB4 - 0
#7FFFFF70 - 0 #7FFFFFBE - 0
#7EFFFF74 - 0 #7FFFFFBC - 0
#7FFFFF78 - 0 #7FFEFFCO - 0O
#7TFFFFFIC - 0 #7FFFFFC4 - 1
#7FFFFF80 - 0 #7FFFFFC8 - 1
#7FFFFF84 - 0 #7FFFFFCC - O
#7FFFFF88 - 0 #7FFFFFDO0 - ©
#7FFFFF8C - 0 #7FFFFFDA - O
#7TFFFFFS0 - 0 #7FFFFFDE - 1
#7FFFFFS4 - 0 #7FFFFEDC - 0
#7FFFFF98 - 0 #7FFFFFE0 - 1
#7FFFFF9C - 0 #7FFFFFE4 - O
#7FFFFFA0 - 1 #7FFFFFEE - 0
#7FFFFFA4 - 1 #7FFFFFEC - 1
#7FFFFFA8 - 1 $7FFFEFF0 - 1
#7EFFFFAC - 1 #7FFFFFF4 - 1

1 #7FFFFFFE - 1

\ #7FFFFFBO

Figure 16.7 Example 1emit display page 6

72 TDS 275 02 March 1991

332 16 iemit — Memory configurer

16.6 iemit error and warning messages
The following is a list of error and warning messages the tool can produce:
Wait race

If one of the programmable strobes is used to extend the memory cycle
then the strobe must be taken low an even number of periods Tm after
the start of the memory interface cycle. If the strobe is taken low an odd
number of periods after the start then a wait race warning will appear.
Should this warning appear, it will remain on display on page 1, until
the race condition is removed. Further information can be obtained from
reference 1, listed at the start of this chapter.

Input out of range
If the value entered for a numeric parameter is outside the range valid
for that parameter, an input out of range warning is displayed, the value
cleared from the screen and the program waits for a new value.

MemWait connection error

It an attempt is made to connect S1 to the MemWait input an error is
displayed because it is a meaningless operation.

Configuration cannot be hardwired on a T414
The transputers which have a configurable memory interface all have
(with the exception of the T414) 17 standard memory configurations avail-
able to them. The T414 only has a choice of 13 standard configurations.
If the standard configurations 12, 13, 14 or 15 are selected for a T414
the above warning message will be displayed against the selection on
page 1.

Unable to open configuration file ‘fiename’
This can occur when attempting to load a memory configuration file and
indicates that the tool cannot find the specified input file. Check the
spelling of the filename and/or that the file is present.

Command line parsing error

An option has been specified that the tool does not recognise.

72 TDS 275 02 March 1991

16.7 Memory configuration file 333

No input file specified

This indicates that when trying to invoke the tool to produce an output file,
the user has not specified a memory configuration file to use as input.

One and only one of options A or P must be specified

This indicates that when trying to produce an output file, the user has not
specified whether the output is to be in ASCII or PostScript format.

Unable to open output file filename'

An output filename has been specified incorrectly. Check the format of
the filename.

16.7 Memory configuration file

Memory configuration files are text files which may be generated by a standard
text editor or by using the memory interface configuration tool iemit, see sec-
tion 16.2.

If the user has existing memory configuration files created by iemi (a previous
version of iemit) then the user will need to convert them from the old file format
to the file format used by the current EPROM tools. This is achieved by using
the memory configuration conversion tool icvemit, see section 16.8.

By convention memory configuration files have the file extension .mem. The
file consists of a sequence of statements and comments. The following are
considered to be comments:

e Blank lines

e Any line whose first significant characters are '——’

¢ Any portion of a line following '——".

Comments are ignored by the ieprom and iemit tools. Statements are all
other lines within the file; they may be interspersed with comments.

Individual statements are constructed of the statement and an associated param-
eter. These must be separated by at least one space or tab but extra spaces
may be inserted before, between, or after them for aesthetic purposes.

The statements defined are listed along with their parameters in table 16.9.
Further information about specifying parameters is given in section 16.4.2.

72 TDS 275 02 March 1991

334

16 iemit — Memory configurer

Statement

Parameters

standard.configuration

0 to 13 or 31 for T414 processors. 0 to
15 or 31 for T400, T425, T800 and T805
processors.

device.type

One of the following devices:

T400-20 TB00-17
T414-15 T800-20
T414-17 T800-22
T414-20 T800-25
T425-17 T800-30
T425-20 T800-35
T425-25 T800-25
T425-30 T805-30

té.duration

tl.duration,
t2.duration
t3.duration,
t4.duration,
t5.duration

110 4 Tm periods. (2 Tm periods = 1 clock
cycle). Defines the length in Tm periods of
Tstates, T1 to T8, of the memory cycle.

s0.label,
sl.label,
s2.label,
s3.1label,
s4.label

Each of these parameters accepts two
text strings. They are the long (up to 9
characters) and short (1 character) names
of the strobes notMemS0 to notMemS4.
The names should not contain embedded
spaces. Names longer than the permitted
number of characters will be truncated.

rs.label

As above, the long and short names for the
read strobe notMemRd.

ws.label

As above, the long and short names for the
read strobe notMemWrB.

sl.duration

0 to 31 Tm periods. The S1 strobe goes
low at the start of Tstate 2. This parame-
ters defines the number of Tm periods be-
fore it goes high.

s4.duration

s2.duration,
s3.duration

0 to 31 Tm periods. The S2 to S4 strobes
all go high at the end of Tstate 5. These
parameters define the number of Tm peri-
ods before each strobe goes low.

Table 16.9 Memory Configuration file statements

72 TDS 275 02

March 1991

16.7 Memory configuration file 335

Statement Parameters

refresh.period 18, 36, 54, 72 or the string "Disabled”. This
parameter defines the period between re-
fresh cycles as a count of Clockin cycles.

write.mode String value either: "Early” or "Late”. De-
fines the write mode.
wait.connection S2, 83, S4 or a value in the range 0 to 60.

This parameter connects MemWait to one
of the strobes S2, S3, S4 or to simulated
external wait state generator.

Table 16.10 Memory Configuration file statements
Example memory configuration file

- Memory interface configuration for
- build xxx of processor board.

device.type := T800-25
tl.duration = 3 =-- Take 3 state to setup
—- address.

t2.duration
t3.duration
t4.duration
t5.duration
t6.duration
sl.duration
s2.duration
s3.duration
s4 .duration

1 T | | [|

n

E ﬁ ONHUHKFENEN
=
o

e es 49 w8 s s ss

s0.label =

sl.label =

s2.label = MUX
s3.label := CAS
s4.label := WAIT
rs.label := notMemRd
ws.label := notMemWrB
refresh.period = 36
write.mode := EARLY
wait.connection 1= 84

72 TDS 275 02 March 1991

336

16 iemit — Memory configurer

16.8 Memory interface conversion tool icvemit

This tool is provided to convert memory configuration files produced by iemi (a
previous version of iemit) to the file format recognised by the current release
of iemit and ieprom.

The tool will take, as input, the ‘save’ file produced by iemi and convert it to a
memory configuration file in a format which may be read by the current release
of the EPROM tools.

16.9 Running icvemit

The icvemit tool can be invoked by the following command line:

> icvemit filename {options}

where: filename is the input file; this file must have been created by the tool
iemi released with the IMS D705/D6805/D505 toolsets.

options is a list of one or more options from table 16.11.

Options are preceded by ‘-’ for UNIX based toolsets and ‘/' for MS-
DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order.

Options must be separated by spaces.

It no arguments are given on the command line a help page is displayed giving
the command syntax.

Option | Description
I Select verbose mode. In this mode the user will receive status
information about what the tool is doing during operation eg.
reading or writing to a file.
O filename | Specify output filename. Saves the output to a specified file-

name. If the option is not supplied then the output will be placed
in a file with the same name as the input file but with the exten-
sion of “mem”.

Table 16.11 icvemit options

72 TDS 275 02 March 1991

16.10 icvemit error messages 337

The operation of icvemit in terms of standard file extensions is shown below:

ww icvemit

Note: the file extension of the input file pertains to previous issues of the toolset.

Example
icvemit memconfig.asc -i -o memconfig.mem UNIX
icvemit memconfig.asc /i /o memconfig.mem (MS-DOS/VMS)

16.10 icvemit error messages
The following is a list of error and warning messages the tool can produce:
Unable to open configuration file ‘filename’

Indicates that the tool cannot find the specified input file. Check the
spelling of the flename and/or that the file is present.

Command line parsing error

This indicates that an option has been specified that the tool does not
recognise.

No input file specified

This indicates that when trying to invoke the tool to produce an output file,
the user has not specified a memory configuration file to use as input.

Unable to open output file filename’

An output filename has been specified incorrectly. Check the format of
the filename.

72 TDS 275 02 March 1991

338 16 iemit — Memory configurer

72 TDS 275 02 March 1991

17 ieprom — EPROM
program convertor

This chapter describes the EPROM Hex tool ieprom. This tool is used to
convert a ROM-bootable file into one or more files suitable for blowing into an
EPROM.

The chapter describes how to invoke ieprom and gives details of the command
line syntax. It describes the control file which the tool accepts as input and
provides background information on the layout of the code in the EPROM. A
description of the various file formats which may be output by the tool is given,
including block mode where the output is split up over a number of files. The
chapter ends with a list of error messages which may be generated by the tool.

17.1 Introduction

The INMOS EPROM software is designed so that programs which have been
developed and tested using the INMOS toolset may be placed in ROM with only
minor modification (see below).

This has the advantages that an application need not be committed to ROM until
it is fully debugged and the actual production of the ROMs can be done relatively
late in the development cycle without the fear of introducing new problems.

If a network of transputers is being used, only the root transputer needs to be
booted from ROM; once this has been booted it will boot its neighbours by link.

Figure 17.1 shows how a network of five transputers would be loaded from a
ROM accessed by the root transputer.

Some 32 bit transputers have a configurable external memory interface. For
these transputers a memory configuration file may be created and blown into
ROM together with the application. A description of memory configuration files
and how to create them is given in chapter 16.

17.2 Prerequisites to using the hex tool ieprom

For an application file to be suitably formatted for blowing into ROM it must
have been configured to be booted from ROM rather than booted from link. This
selection is made by specifying the appropriate command line option when using
the occonf and icollect tools. See chapters 26 and 12 respectively.

72 TDS 275 02 March 1991

340 17 ieprom — EPROM program convertor

Boot from link

link
frog:”%?Mwm Eg&tftrrgr?‘sagﬂ ie, Boot from link link;, Boot from link

link

Boot from link

Figure 17.1 Loading a network from ROM

17.3 Running ieprom

ieprom takes as input a control file and outputs one or more files which may
be blown into ROM by an EPROM programmer.

The control file, in text format, specifies the root transputer type, the name of
the bootable file containing the application, the memory configuration file (if one
is being used), the amount of space required on the EPROM and the format
that the output is to take. Available output formats are: binary, hex dump, Intel,
Extended Intel or Motorola S-Record format.

The ieprom tool is invoked by the following command line:
> ieprom filename {option}

where: filename is the name of the control file.

option may take the value I which selects verbose mode. In this mode
the user will receive status information about what the tool is doing during
operation for example reading or writing to a file. If option ‘I’ is specified
it must be preceded by *’ for UNIX based tools or /' for MS-DOS and
VMS based tools.

If no arguments are given on the command line a help page is displayed giving
the command syntax.

The operation of ieprom in terms of standard file extensions is shown below.

72 TDS 275 02 March 1991

17.4 ieprom control file 341

ieprom

b

.bin

17.3.1 Examples of use

ieprom may be invoked in verbose mode by using one of the following com-
mands:

ieprom-i mycontrol.epr (UNIX based toolsets)

ieprom/i mycontrol.epr (MS-DOS and VMS based toolsets)

17.4 ieprom control file

The control file is a standard text file, prepared by an editor; it consists of com-
ments and statements.

The following are considered to be comments:

¢ Blank lines

e Any line whose first significant characters are ‘——

e Any portion of a line following ‘——".
Comments are ignored by the ieprom tool.
Statements are all other lines within the file. They may be in any order, except
that the four statements defining a block must immediately follow the statement
output.block (see table 17.2). Statements may be interspersed with com-
ments.
Individual statements are constructed of the statement and an associated param-
eter. These must be separated by at least one space or tab but extra spaces
may be inserted before, between, or after them for aesthetic purposes. The

statements defined are listed along with their parameters in tables 17.1 and
17:2.

72 TDS 275 02 March 1991

342

17 ieprom — EPROM program convertor

Statement

Parameter/Description

root.processor.type

T2, T4orT8

This statement has a keyword as its param-
eter. It specifies the root processor type as
being T2 (16 bit processor), T4 (32 bit pro-
cessor), or T8 (32 bit processor with a floating
point unit). This statement must be present in
the control file.

bootable.file

filename

This statement specifies the file that contains
the output of icollect, usually the appli-
cation plus its ROM loader(s). This file is
inserted into the EPROM with the comment
bootstrap at its head removed. This statement
must be present in the control file.

memory.confi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>